13.f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x-2-x,則$f({log_2}\frac{1}{3})$的值為( 。
A.$-{log_2}3-\frac{1}{3}$B.${log_2}3-\frac{1}{3}$C.$-{log_2}3+\frac{1}{3}$D.${log_2}3+\frac{1}{3}$

分析 由已知得$f({log_2}\frac{1}{3})$=f(-log23)=-f(log23),利用當x>0時,f(x)=x-2-x,即可得出結論.

解答 解:∵f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=x-2-x,
∴$f({log_2}\frac{1}{3})$=f(-log23)=-f(log23)=-(log23-${2}^{-lo{g}_{2}3}$)=-log23+$\frac{1}{3}$.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.若實數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{x+y-3≥0}\end{array}\right.$,則z=3x+y的最小值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知f(x)為定義在[-1,1]上的奇函數(shù),當x∈[-1,0]時,函數(shù)解析式f(x)=$\frac{1}{{4}^{x}}$-$\frac{a}{{2}^{x}}$(a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{3}$x3+mx2-3m2x+1
(1)當m=1時,求曲線y=f(x)在點(2,f(2))處的切線方程
(2)若f(x)在區(qū)間(-2,3)上是減函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.永泰某景區(qū)為提高經(jīng)濟效益,現(xiàn)對某一景點進行改造升級,從而擴大內(nèi)需,提高旅游增加值,經(jīng)過市場調(diào)查,旅游增加值y萬元與投入x(x≥10)萬元之間滿足:y=f(x)=ax2+$\frac{101}{50}$x-bln$\frac{x}{10}$,a,b為常數(shù).當x=10萬元時,y=19.2萬元;當x=30萬元時,y=50.5萬元.(參考數(shù)據(jù):ln2=0.7,ln3=1.1,ln5=1.6).
(1)求f(x)的解析式;
(2)求該景點改造升級后旅游利潤T(x)的最大值.(利潤=旅游增加值-投入).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=4sin(ωx+φ)(ω>0,-π<φ<π)的圖象各點的縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,得到g(x)=4sinx的圖象.
(1)求函數(shù)f(x)的遞增區(qū)間;
(2)求函數(shù)f(x)在[-$\frac{π}{12}$,$\frac{2π}{5}$]上的值域;
(3)求證:對任意λ>0,都存在μ>0,使f(x)+x-4<0對x∈(-∞,λμ)恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點為F1、F2,離心率為$\frac{\sqrt{3}}{3}$,過F2的直線l交C與A、B兩點,若△AF1B的周長為$8\sqrt{3}$,則C的方程為( 。
A.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{3}$+y2=1C.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.當實數(shù)a為何值時z=a2-2a+(a2-3a+2)i.
(1)為純虛數(shù);
(2)為實數(shù);
(3)對應的點在第一象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.計算:sin21°cos39°+cos21°sin39°=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

同步練習冊答案