【題目】某校高三年級(jí)有1000人,某次數(shù)學(xué)考試不同成績(jī)段的人數(shù)

(1)求該校此次數(shù)學(xué)考試平均成績(jī);

(2)計(jì)算得分超過(guò)141的人數(shù);

(3)甲同學(xué)每次數(shù)學(xué)考試進(jìn)入年級(jí)前100名的概率是,若本學(xué)期有4次考試, 表示進(jìn)入前100名的次數(shù),寫(xiě)出的分布列,并求期望與方差.

【答案】(1)23;(2)見(jiàn)解析

【解析】試題分析:1由不同成績(jī)段的人數(shù)服從正態(tài)分布,可知平均成績(jī);(2141分以上的人數(shù)為;(3的取值范圍為0,1,2,3,4,求出相應(yīng)的概率值,得到分布列及期望與方差.

試題解析:

(1)由不同成績(jī)段的人數(shù)服從正態(tài)分布,可知平均成績(jī).

2,

故141分以上的人數(shù)為人.

3的取值范圍為0,1,2,3,4,

, ,

, ,

的分布列為:

0

1

2

3

4

期望,

方差

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2010年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示。

1)求第3、4、5組的頻率;

2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績(jī)高的第3、45組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第34、5組每組各抽取多少學(xué)生進(jìn)入第二輪面試?

3)在(2)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有一名學(xué)生被甲考官面試的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值和最小值.設(shè)

1)求的值

2)若不等式上有解,求實(shí)數(shù)的取值范圍;

3)若有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在推導(dǎo)很多三角恒等變換公式時(shí),我們可以利用平面向量的有關(guān)知識(shí)來(lái)研究,在一定程度上可以簡(jiǎn)化推理過(guò)程.如我們就可以利用平面向量來(lái)推導(dǎo)兩角差的余弦公式:

具體過(guò)程如下:

如圖,在平面直角坐標(biāo)系內(nèi)作單位圓O,以為始邊作角.它們的終邊與單位圓O的交點(diǎn)分別為A,B.

由向量數(shù)量積的坐標(biāo)表示,有:

設(shè)的夾角為θ,則

另一方面,由圖3.131)可知,;由圖可知,

.于是.

所以,也有,

所以,對(duì)于任意角有:

此公式給出了任意角的正弦、余弦值與其差角的余弦值之間的關(guān)系,稱(chēng)為差角的余弦公式,簡(jiǎn)記作.

有了公式以后,我們只要知道的值,就可以求得的值了.

閱讀以上材料,利用下圖單位圓及相關(guān)數(shù)據(jù)(圖中MAB的中點(diǎn)),采取類(lèi)似方法(用其他方法解答正確同等給分)解決下列問(wèn)題:

1)判斷是否正確?(不需要證明)

2)證明:

3)利用以上結(jié)論求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(一)在函數(shù)圖象的學(xué)習(xí)中常常用到化歸轉(zhuǎn)化的思想,往往通過(guò)對(duì)一些已經(jīng)學(xué)習(xí)過(guò)的函數(shù)圖象的研究,進(jìn)一步遷移到其它函數(shù),例如函數(shù)與正弦函數(shù)就有密切的聯(lián)系,因?yàn)?/span>.只需將軸下方的圖象翻折到上方,就得到的圖象.

(二)在研究函數(shù)零點(diǎn)問(wèn)題時(shí),往往會(huì)將函數(shù)零點(diǎn)問(wèn)題轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問(wèn)題.例如研究函數(shù)的零點(diǎn)就可以轉(zhuǎn)化為函數(shù)與函數(shù)的圖象交點(diǎn)來(lái)進(jìn)行處理,通過(guò)作圖不僅知道函數(shù)有且僅有一個(gè)零點(diǎn),還可以確定零點(diǎn).這體現(xiàn)了化歸轉(zhuǎn)化與數(shù)形結(jié)合的思想在函數(shù)研究中的應(yīng)用.

結(jié)合閱讀材料回答下面兩個(gè)問(wèn)題:

作出函數(shù)的圖象;

利用作圖的方法驗(yàn)證函數(shù)有且僅有兩個(gè)零點(diǎn).若記兩個(gè)零點(diǎn)分別為,證明:.(注:在同一坐標(biāo)中作圖)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四面體中,分別是線段的中點(diǎn),,,直線與平面所成的角等于

(Ⅰ)證明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年,我國(guó)施行個(gè)人所得稅專(zhuān)項(xiàng)附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項(xiàng)專(zhuān)項(xiàng)附加扣除.某單位老、中、青員工分別有72,108,120人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取25人調(diào)查專(zhuān)項(xiàng)附加扣除的享受情況.

項(xiàng)目

員工

A

B

C

D

E

F

子女教育

×

×

繼續(xù)教育

×

×

×

大病醫(yī)療

×

×

×

×

×

住房貸款利息

×

×

住房租金

×

×

×

×

×

贍養(yǎng)老人

×

×

×

1)應(yīng)從老、中、青員工中分別抽取多少人?

2)抽取的25人中,享受至少兩項(xiàng)專(zhuān)項(xiàng)附加扣除的員工有6人,分別記為A,B,C,D,E,F.享受情況如下表,其中“○”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機(jī)抽取2人接受采訪.

①試用所給字母列舉出所有可能的抽取結(jié)果;

②設(shè)M為事件抽取的2人享受的專(zhuān)項(xiàng)附加扣除至少有一項(xiàng)相同,求事件M發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知fx)=x3﹣3x,過(guò)點(diǎn)P(2,2)作函數(shù)yfx)圖象的切線,則切線方程為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長(zhǎng),r為三角形內(nèi)切圓半徑,利用類(lèi)比推理,可以得出四面體的體積為 ( )

A. V=abc B. V=Sh

C. V=(ab+bc+ac)·h(h為四面體的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個(gè)面的面積,r為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是r)

查看答案和解析>>

同步練習(xí)冊(cè)答案