【題目】在圖中,G、H、M、N分別是正三棱柱的頂點或所在棱的中點,則表示直線GH、MN是異面直線的圖形有 . (填上所有正確答案的序號)

【答案】(2)、(4)
【解析】解析:如題干圖(1)中,直線GH∥MN;
圖(2)中,G、H、N三點共面,但M面GHN,因此直線GH與MN異面;
圖(3)中,連接MG,GM∥HN,因此,GH與MN共面;
圖(4)中,G、M、N共面,但H面GMN,∴GH與MN異面.
所以圖(2)、(4)中GH與MN異面.
所以答案是:(2)、(4)
【考點精析】解答此題的關(guān)鍵在于理解異面直線的判定的相關(guān)知識,掌握過平面外一點與平面內(nèi)一點的直線和平面內(nèi)不經(jīng)過該點的直線是異面直線.(不在任何一個平面內(nèi)的兩條直線).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,點M在PD上.

(1)求證:AB⊥PC
(2)若二面角M﹣AC﹣D的大小為45°,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)在的安卓手機盛行一款“心有靈犀”的猜數(shù)字游戲,具體的規(guī)則如下:

玩家隨機輸入0~5中的三位數(shù)字(數(shù)字不重復(fù)),按“OK”鍵確定答案是否正確,手機會給出“xAyB”的提示,其中“xA”表示你輸入的三位數(shù)字中,有“x”個數(shù)字和位置都與答案相同,其中“yB”表示你輸入的三位數(shù)字中,有“y”個數(shù)字與答案相同,但是位置不同,例如:答案為“012”,當你輸入“132”時會顯示:“1A1B”.

(1)當你第一次輸入時,手機顯示“1A1B”的概率為多少?

(2)當你第一次輸入時,且手機顯示“xA2B”時,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線的焦點,點是不在拋物線上的一個動點,過點向拋物線作兩條切線,切點分別為.

(1)如果點在直線上,求的值;

(2)若點在以為圓心,半徑為4的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直角三角形的兩條直角邊 , 為斜邊上一點,沿將三角形折成直二面角,此時二面角的正切值為,則翻折后的長為( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上的函數(shù)f(x)滿足:
①對任意x,y∈R,都有:f(x+y)=f(x)+f(y)﹣1;
②當x<0時,f(x)>1.
(Ⅰ)試判斷函數(shù)f(x)﹣1的奇偶性;
(Ⅱ)試判斷函數(shù)f(x)的單調(diào)性;
(Ⅲ)若不等式f(a2﹣2a﹣7)+ >0的解集為{a|﹣2<a<4},求f(5)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,且橢圓過點,記橢圓的左、右頂點分別為,點是橢圓上異于的點,直線與直線分別交于點.

(1)求橢圓的方程;

(2)過點作橢圓的切線,記,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=exax2-e2x.

(1)若曲線yf(x)在點(2,f(2))處的切線平行于x軸,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若x>0時,總有f(x)>-e2x,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,又數(shù)列{ }(n∈N*)是公差為1的等差數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

同步練習冊答案