如圖所示,是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,-π<φ<0)的簡(jiǎn)圖,則振幅、周期、初相分別是(  )
A、2,
3
,-
π
6
B、2,
3
,-
4
C、4,
3
,-
4
D、2,
5
,-
π
6
考點(diǎn):y=Asin(ωx+φ)中參數(shù)的物理意義
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)相鄰最低與最高點(diǎn)的橫坐標(biāo)的差值是T的一半,求出T,再根據(jù)T=
ω
求出ω,再根據(jù)最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)的差值是振幅的兩倍,求出振幅,最后代入點(diǎn)(
π
6
,-2)求出φ.
解答: 解:由圖知周期T=2(
6
-
π
6
)=
3
,A=2,
又因?yàn)門=
ω
,知ω=
3
2
;
再將點(diǎn)(
π
6
,-2)代入y=Asin(ωx+φ),計(jì)算求出φ=-
3
4
π,
故選B.
點(diǎn)評(píng):本題考查y=Asin(ωx+φ)中參數(shù)的物理意義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
OA
OB
的夾角為θ,|
OA
|=2,|
OB
|=1,
OP
=t
OA
,
OQ
=(1-t)
OB
,|
PQ
|在t0時(shí)取得最小值,當(dāng)0<t0
1
5
時(shí),夾角θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列結(jié)論,其中判斷正確的是(  )
A、數(shù)列{an}前n項(xiàng)和Sn=n2-2n+1,則{an}是等差數(shù)列
B、數(shù)列{an}前n項(xiàng)和Sn,則an=1
C、數(shù)列{an}前n項(xiàng)和Sn=2n-1,則{an}不是等比數(shù)列
D、數(shù)列{an}前n項(xiàng)和Sn=7n2-8n,則a100=1385

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知λ∈R,函數(shù)f(x)=
|x+1|,x<0
lgx,x>0
,g(x)=x2-4x+1+2λ,若關(guān)于x的方程f(g(x))=λ有6個(gè)解,則λ的取值范圍為( 。
A、(0,
1
2
]
B、(0,
2
3
C、(
1
2
,1)
D、(
1
2
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

120°轉(zhuǎn)化為孤度數(shù)為( 。
A、
1
3
B、
2
3
C、
1
3
π
D、
2
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x+
1
x
的值域是(  )
A、(1,+∞)
B、(-∞,2)
C、(-∞,+∞)
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x2-mx+2當(dāng)x∈[-2,+∞)時(shí)是增函數(shù),則m的取值范圍是( 。
A、(-∞,+∞)
B、[8,+∞)
C、(-∞,-8]
D、(-∞,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若(a+b+c)(b+c-a)=2bc,則△ABC是( 。
A、等腰三角形
B、等邊三角形
C、直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)在矩形ABCD中,AB⊥BC,AD⊥DC,若|
AB
|=3,|
AD
|=5,則
AC
BD
=( 。
A、-16B、16C、25D、15

查看答案和解析>>

同步練習(xí)冊(cè)答案