【題目】已知平面內(nèi)兩點(diǎn)M4,﹣2),N24).

1)求MN的垂直平分線方程;

2)直線l經(jīng)過點(diǎn)A30),且與直線MN平行,求直線l的方程.

【答案】1x3y+10;(23x+y90

【解析】

(1)由中點(diǎn)坐標(biāo)公式求得MN的中點(diǎn)坐標(biāo),再由兩點(diǎn)求斜率公式求得MN所在直線的斜率,進(jìn)一步得到MN的垂直平分線的斜率,再由直線方程點(diǎn)斜式得答案;

(2)直接由直線方程點(diǎn)斜式可得過點(diǎn)A(3,0),且與直線MN平行的直線l的方程.

解:(1)∵M(4,﹣2),N(2,4),

M,N的中點(diǎn)坐標(biāo)為(31),又

MN的垂直平分線的斜率為,則MN的垂直平分線方程為y1(x2),

x3y+10;

(2)∵直線l與直線MN平行,∴直線l的斜率為﹣3

又直線l經(jīng)過點(diǎn)A(3,0),∴直線l的方程為y=﹣3(x3),

3x+y90

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,將曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過原點(diǎn)且關(guān)于軸對稱的兩條直線分別交曲線、、,且點(diǎn)在第一象限,當(dāng)四邊形的周長最大時(shí),求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】建設(shè)生態(tài)文明,是關(guān)系人民福祉,關(guān)乎民族未來的長遠(yuǎn)大計(jì).某市通宵營業(yè)的大型商場,為響應(yīng)節(jié)能減排的號召,在氣溫超過時(shí),才開放中央空調(diào)降溫,否則關(guān)閉中央空調(diào).如圖是該市夏季一天的氣溫(單位:)隨時(shí)間(,單位:小時(shí))的大致變化曲線,若該曲線近似的滿足函數(shù)關(guān)系.

(1)求函數(shù)的表達(dá)式;

(2)請根據(jù)(1)的結(jié)論,判斷該商場的中央空調(diào)應(yīng)在本天內(nèi)何時(shí)開啟?何時(shí)關(guān)閉?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種新產(chǎn)品投放市場一段時(shí)間后,經(jīng)過調(diào)研獲得了時(shí)間(天數(shù))與銷售單價(jià)(元)的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),并作出了散點(diǎn)圖(如圖)

表中,.

(1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作價(jià)格關(guān)于時(shí)間的回歸方程類型?(不必說明理由)

(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)若該產(chǎn)品的日銷售量(件)與時(shí)間的函數(shù)關(guān)系為),求該產(chǎn)品投放市場第幾天的銷售額最高?最高為多少元?(結(jié)果保留整數(shù))

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】湖北省2019年公布了新的高考方案,實(shí)行“3+1+2”模式.某學(xué)生按方案要求任意選擇,則該生選擇考?xì)v史和化學(xué)的概率為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著新高考改革的不斷深入,高中學(xué)生生涯規(guī)劃越來越受到社會的關(guān)注.一些高中已經(jīng)開始嘗試開設(shè)學(xué)生生涯規(guī)劃選修課程,并取得了一定的成果.下表為某高中為了調(diào)查學(xué)生成績與選修生涯規(guī)劃課程的關(guān)系,隨機(jī)抽取50名學(xué)生的統(tǒng)計(jì)數(shù)據(jù).

成績優(yōu)秀

成績不夠優(yōu)秀

總計(jì)

選修生涯規(guī)劃課

15

10

25

不選修生涯規(guī)劃課

6

19

25

總計(jì)

21

29

50

(Ⅰ)根據(jù)列聯(lián)表運(yùn)用獨(dú)立性檢驗(yàn)的思想方法能否有的把握認(rèn)為“學(xué)生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關(guān)”,并說明理由;

(Ⅱ)如果從全校選修生涯規(guī)劃課的學(xué)生中隨機(jī)地抽取3名學(xué)生,求抽到成績不夠優(yōu)秀的學(xué)生人數(shù)的分布列和數(shù)學(xué)期望(將頻率當(dāng)作概率計(jì)算).

參考附表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程。

已知曲線Ct為參數(shù)), C為參數(shù))。

1)化C,C的方程為普通方程,并說明它們分別表示什么曲線;

2)若C上的點(diǎn)P對應(yīng)的參數(shù)為,QC上的動點(diǎn),求中點(diǎn)到直線

t為參數(shù))距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上.這條直線被后人稱為三角形的歐拉線”.在平面直角坐標(biāo)系中作△ABC,ABAC4,點(diǎn)B(1,3),點(diǎn)C(4,-2),且其歐拉線與圓M相切,則下列結(jié)論正確的是(

A.M上點(diǎn)到直線的最小距離為2

B.M上點(diǎn)到直線的最大距離為3

C.若點(diǎn)(x,y)在圓M上,則的最小值是

D.與圓M有公共點(diǎn),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)德智體美勞的教育方針,唐徠回中高一年級舉行了由全體學(xué)生參加的一分鐘跳繩比賽,計(jì)分規(guī)則如下:

每分鐘跳繩個(gè)數(shù)

185以上

得分

16

17

18

19

20

年級組為了了解學(xué)生的體質(zhì),隨機(jī)抽取了100名學(xué)生,統(tǒng)計(jì)了他的跳繩個(gè)數(shù),并繪制了如下樣本頻率直方圖:

1)現(xiàn)從這100名學(xué)生中,任意抽取2人,求兩人得分之和小于35分的概率(結(jié)果用最簡分?jǐn)?shù)表示);

2)若該校高二年級2000名學(xué)生,所有學(xué)生的一分鐘跳繩個(gè)數(shù)近似服從正態(tài)分布,其中為樣本平均數(shù)的估計(jì)值(同一組中數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間的中點(diǎn)值為代表).利用所得到的正態(tài)分布模型解決以下問題:

①估計(jì)每分鐘跳繩164個(gè)以上的人數(shù)(四舍五入到整數(shù))

②若在全年級所有學(xué)生中隨機(jī)抽取3人,記每分鐘跳繩在179個(gè)以上的人數(shù)為,求的分布列和數(shù)學(xué)期望與方差.

(若隨機(jī)變量服從正態(tài)分布,

查看答案和解析>>

同步練習(xí)冊答案