【題目】已知正三角形ABC的邊長為2,AM是邊BC上的高,沿AM將△ABM折起,使得二面角B﹣AM﹣C的大小為90°,此時(shí)點(diǎn)M到平面ABC的距離為 .
【答案】
【解析】解:∵正三角形ABC的邊長為2,AM是邊BC上的高,
沿AM將△ABM折起,使得二面角B﹣AM﹣C的大小為90°,
∴MA、MB、MC三條直線兩兩垂直,AM= ,BM=CM=1,
以M為原點(diǎn),MB,MC,MA為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
則M(0,0,0),B(1,0,0),C(0,1,0),
A(0,0, ),
=(﹣1,0,0), =(﹣1,0, ), =(﹣1,1,0),
設(shè)平面ABC的法向量 =(x,y,z),
則 ,取x= ,得 =( , ,1),
∴點(diǎn)M到平面ABC的距離為:
d= = = .
所以答案是: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,2), =(cosα,sinα),設(shè) = +t (t為實(shí)數(shù)).
(1)若 ,求當(dāng)| |取最小值時(shí)實(shí)數(shù)t的值;
(2)若 ⊥ ,問:是否存在實(shí)數(shù)t,使得向量 ﹣ 和向量 的夾角為 ,若存在,請(qǐng)求出t;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA⊥平面ABCD,AD∥BC,AD=2BC,AB⊥BC,點(diǎn)E為PD中點(diǎn).
(1)求證:AB⊥PD;
(2)求證:CE∥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)是R上的偶函數(shù),則φ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知: 、 、 是同一平面上的三個(gè)向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 ﹣ 垂直,求 與 的夾角θ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一個(gè)周期的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | x1 | x2 | x3 | ||
Asin(ωx+φ)+B | 0 | 0 | ﹣ | 0 |
(1)請(qǐng)求出上表中的x1 , x2 , x3 , 并直接寫出函數(shù)f(x)的解析式;
(2)若3sin2 ﹣ mf( ﹣ )≥m+2對(duì)任意x∈[0,2π]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosx,﹣1), =( sinx,cos2x),設(shè)函數(shù)f(x)= + .
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈(0, )時(shí),求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,Sn是數(shù)列{bn}的前n項(xiàng)和,對(duì)任意正整數(shù)n不等式 恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com