【題目】已知函數(shù)f (x)的圖象在點(2,f (2))處的切線方程為16xy200.

1)求實數(shù)a、b的值;

2)求函數(shù)f(x)在區(qū)間[1,2]上的最大值;

【答案】(1);(2),上的最大值為;當, 上的最大值為.

【解析】

(1)利用函數(shù)圖象在點處的切線方程為,結(jié)合導數(shù)的幾何意義列出關(guān)于的關(guān)系式再求解即可.
(2)根據(jù)分段函數(shù),分類討論的范圍,利用函數(shù)的單調(diào)性,即可求上的最大值;

(1),,因為函數(shù)圖象在點處的切線方程為,所以切點坐標為,

所以,解得;

(2)(1),,,

可得,故函數(shù)在上單調(diào)遞減,上單調(diào)遞增.

,的最大值為

,.

,恒成立, ,此時上的最大值為;

,上單調(diào)遞增,

,,

∴當,上的最大值為;

, 上的最大值為

綜上,, 上的最大值為,, 上的最大值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某公園內(nèi)有一塊以O為圓心半徑為20米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺,舞臺為扇形OAB區(qū)域,其中兩個端點AB分別在圓周上;觀眾席為等腰梯形ABQP內(nèi)且在圓O外的區(qū)域,其中,,且ABPQ在點O的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個觀眾到舞臺中心O處的距離都不超過60米(即要求.設(shè),.

1)當時求舞臺表演區(qū)域的面積;

2)對于任意α,上述設(shè)計方案是否均能符合要求?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某網(wǎng)店經(jīng)營的一種商品進行進價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.

(1)根據(jù)周銷售量圖寫出(件)與單價(元)之間的函數(shù)關(guān)系式;

(2)寫出利潤(元)與單價(元)之間的函數(shù)關(guān)系式;當該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱臺中,底面,四邊形為菱形,.

(1)若中點,求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1、2、3、4、56)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為,第二次出現(xiàn)的點數(shù)為.

1)設(shè)復數(shù)為虛數(shù)單位),求事件為實數(shù)的概率;

2)求點落在不等式組表示的平面區(qū)域內(nèi)(含邊界)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016高考新課標II,理15)有三張卡片,分別寫有12,13,23.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:我與丙的卡片上相同的數(shù)字不是1”,丙說:我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在明代程大位所著的《算法統(tǒng)宗》中有這樣一首歌謠,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應該分別向青苗主人賠償多少升糧食?(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各對事件中,不是相互獨立事件的有( )

A.運動員甲射擊一次,“射中9環(huán)”與“射中8環(huán)”

B.甲乙兩運動員各射擊一次,“甲射中10環(huán)”與“乙射中9環(huán)”

C.甲乙兩運動員各射擊一次,“甲乙都射中目標”與“甲乙都沒有射中目標”

D.甲乙兩運動員各射擊一次,“至少有1人射中目標”與“甲射中目標但乙未射中目標”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著科學技術(shù)的飛速發(fā)展,網(wǎng)絡(luò)也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購作為一種新的消費方式,因其具有快捷、商品種類齊全、性價比高等優(yōu)勢而深受廣大消費者認可.某網(wǎng)購公司統(tǒng)計了近五年在本公司網(wǎng)購的人數(shù),得到如下的相關(guān)數(shù)據(jù)(其中x=1”表示2015年,x=2”表示2016年,依次類推;y表示人數(shù))

x

1

2

3

4

5

y(萬人)

20

50

100

150

180

1)試根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并預測到哪一年該公司的網(wǎng)購人數(shù)能超過300萬人;

2)該公司為了吸引網(wǎng)購者,特別推出玩網(wǎng)絡(luò)游戲,送免費購物券活動,網(wǎng)購者可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車在方格圖上行進. 若遙控車最終停在勝利大本營,則網(wǎng)購者可獲得免費購物券500元;若遙控車最終停在失敗大本營,則網(wǎng)購者可獲得免費購物券200. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標有第0格、第1格、第2格、、第20格。遙控車開始在第0格,網(wǎng)購者每拋擲一次骰子,遙控車向前移動一次.若擲出奇數(shù),遙控車向前移動一格(從)若擲出偶數(shù)遙控車向前移動兩格(從),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結(jié)束。設(shè)遙控車移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購者參與游戲一次獲得免費購物券金額的期望值.

附:在線性回歸方程中,.

查看答案和解析>>

同步練習冊答案