14.設(shè)復(fù)數(shù)z=1+i,則復(fù)數(shù)$\frac{2}{z}$+z2的共軛復(fù)數(shù)為1-i.

分析 直接利用復(fù)數(shù)的代數(shù)形式混合運(yùn)算化簡(jiǎn)求解即可.

解答 解:復(fù)數(shù)z=1+i,則復(fù)數(shù)$\frac{2}{z}$+z2=$\frac{2}{1+i}+(1+i)^{2}$=$\frac{2(1-i)}{(1+i)(1-i)}+2i$
=1+i.
復(fù)數(shù)$\frac{2}{z}$+z2的共軛復(fù)數(shù)為:1-i
故答案為:1-i.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)形式混合運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 2x-y≤2\end{array}$,
(1)求目標(biāo)函數(shù)z=$\sqrt{{x^2}+{y^2}}$的最大值和最小值;
(2)若目標(biāo)函數(shù)z=ax+2y僅在點(diǎn)(1,0)處取得最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.$\underset{lim}{n→∞}$$\frac{5{n}^{2}-2}{(n-3)(n+1)}$=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若集合M={-1,0,1,2},N={0,2,4,6},則M∩N=(  )
A.{-1,1,6}B.{-1,1}C.{-1,0,1,2,4,6}D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.隨機(jī)變量ξ的分布列如表,則D(ξ)=$\frac{5}{9}$
ξ012
P$\frac{1}{2}$$\frac{1}{3}$p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.命題“?x∈R,ax2-2ax+1≤0”的否定是?x∈R,ax2-2ax+1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.“x2-2x<0”是“l(fā)og2(2-x)<2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.定義域?yàn)镽的奇函數(shù)f(x)是減函數(shù),當(dāng)f(a)+f(a2)>0成立時(shí),實(shí)數(shù)a的取值范圍是( 。
A.a<-1或a>0B.-1<a<0C.a<0或a>1D.a<-1或a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知$\left\{\begin{array}{l}{|x|+x+y=10}\\{|y|+x-y=12}\end{array}\right.$,求x+y的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案