【題目】已知0x20y2,且M+M的最小值為(  )

A.B.C.2D.

【答案】D

【解析】

先根據(jù)兩點(diǎn)間距離公式化為動(dòng)點(diǎn)到四個(gè)定點(diǎn)的距離和,再根據(jù)圖象確定最小值取法,即得結(jié)果.

解:根據(jù)題意,可知

表示點(diǎn)(x,y)與點(diǎn)A,0)的距離;

表示點(diǎn)(xy)與點(diǎn)B0,)的距離;

表示點(diǎn)(x,y)與點(diǎn)C,2)的距離;

表示點(diǎn)(x,y)與點(diǎn)D2,)的距離.

M表示點(diǎn)(x,y)到A、BC、D四個(gè)點(diǎn)的距離和的最小值.

則可畫圖如下:

的最小值是點(diǎn)(x,y)在線段AC上,

同理,

的最小值是點(diǎn)(x,y)在線段BD上,

∴點(diǎn)(x,y)既在線段AC上,又在線段BD上,

∴點(diǎn)(xy)即為圖中點(diǎn)P.

M的最小值為|AC|+|BD|4.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為原點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)設(shè)直線軸的交點(diǎn)為,過點(diǎn)作傾斜角為的直線與曲線交于兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動(dòng)點(diǎn)到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),過動(dòng)點(diǎn)C的直線VC垂直于圓O所在平面,DE分別是VA,VC的中點(diǎn).

1)判斷直線DE與平面VBC的位置關(guān)系,并說明理由;

2)當(dāng)△VAB為邊長為的正三角形時(shí),求四面體VDEB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓, 是圓M內(nèi)一個(gè)定點(diǎn),P是圓上任意一點(diǎn),線段PN的垂直平分線l和半徑MP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為曲線E

1)求曲線E的方程;

2)過點(diǎn)D(03)作直線m與曲線E交于A,B兩點(diǎn),點(diǎn)C滿足 (O為原點(diǎn)),求四邊形OACB面積的最大值,并求此時(shí)直線m的方程;

3)已知拋物線上,是否存在直線與曲線E交于G,H,使得G,H的中點(diǎn)F落在直線y=2x上,并且與拋物線相切,若直線存在,求出直線的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),過動(dòng)點(diǎn)C的直線VC垂直于圓O所在平面,D,E分別是VA,VC的中點(diǎn).

1)判斷直線DE與平面VBC的位置關(guān)系,并說明理由;

2)當(dāng)△VAB為邊長為的正三角形時(shí),求四面體VDEB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)解不等式: ;

(Ⅱ)已知,若對任意的,不等式恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,圓的內(nèi)切圓,在邊,上的切點(diǎn)分別為,,,,動(dòng)點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)在曲線上,是坐標(biāo)原點(diǎn),若,判斷四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,的中點(diǎn),現(xiàn)將折起,使得平面及平面都與平面垂直.

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案