【題目】用五種不同顏色(顏色可以不全用完)給三棱柱的六個頂點涂色,要求每個點涂一種顏色,且每條棱的兩個端點涂不同顏色,則不同的涂色種數(shù)有( )
A. B. C. D.
【答案】D
【解析】
分成用種顏色、種顏色、種顏色三種情況,分別計算出涂色種數(shù),然后相加得到總的方法數(shù)..
先涂“A,B,C”,后涂“D,E,F”.若用種顏色,先涂A,B,C方法數(shù)有,再涂D,E,F中的兩個點,方法有,最后一個點的方法數(shù)有種.故方法數(shù)有種.若用種顏色,首先選出種顏色,方法數(shù)有種,先涂A,B,C方法數(shù)有種,再涂D,E,F中的一個點,方法有種,最后兩個點的方法數(shù)有種.故方法數(shù)有種.若用種顏色,首先選出種顏色,方法數(shù)有,先涂A,B,C方法數(shù)有種,再涂D,E,F方法數(shù)有種.故方法數(shù)有種.綜上所述,總的方法數(shù)有種.故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 底面, , ∥, , .
(1)求證:平面 平面;
(2)若棱上存在一點,使得二面角的余弦值為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】標(biāo)號為0到9的10瓶礦泉水.
(1)從中取4瓶,恰有2瓶上的數(shù)字相鄰的取法有多少種?
(2)把10個空礦泉水瓶掛成如下4列的形式,作為射擊的靶子,規(guī)定每次只能射擊每列最下面的一個(射中后這個空瓶會掉到地下),把10個礦泉水瓶全部擊中有幾種不同的射擊方案?
(3)把擊中后的礦泉水瓶分送給A、B、C三名垃圾回收人員,每個瓶子1角錢.垃圾回收人員賣掉瓶子后有幾種不同的收入結(jié)果?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.
某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).
(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);
(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓,把圓上每一點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到曲線,且傾斜角為,經(jīng)過點的直線與曲線交于兩點.
(1)當(dāng)時,求曲線的普通方程與直線的參數(shù)方程;
(2)求點到兩點的距離之積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面底面,且在底面正投影點在線段上,,.
(1)證明:;
(2)若,與所成角的余弦值為,求鈍二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,討論的單調(diào)性;
(2)若,且對于函數(shù)的圖象上兩點, ,存在,使得函數(shù)的圖象在處的切線.求證;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工企業(yè)2018年年底投入100萬元,購入一套污水處理設(shè)備。該設(shè)備每年的運轉(zhuǎn)費用是0.5萬元,此外,每年都要花費一定的維護(hù)費,第一年的維護(hù)費為2萬元,由于設(shè)備老化,以后每年的維護(hù)費都比上一年增加2萬元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費用為(單位:萬元)
(1)用表示;
(2)當(dāng)該企業(yè)的年平均污水處理費用最低時,企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園雛鷹班的生活老師統(tǒng)計2018年上半年每個月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:
溫差 | ||||||
患感冒人數(shù) | 8 | 11 | 14 | 20 | 23 | 26 |
其中,,.
(Ⅰ)請用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合與的關(guān)系;
(Ⅱ)建立關(guān)于的回歸方程(精確到),預(yù)測當(dāng)晝夜溫差升高時患感冒的小朋友的人數(shù)會有什么變化?(人數(shù)精確到整數(shù))
參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是, ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com