【題目】已知橢圓的左右頂點(diǎn)分別是,,點(diǎn)在橢圓上,過該橢圓上任意一點(diǎn)P軸,垂足為Q,點(diǎn)C的延長線上,且

1)求橢圓的方程;

2)求動(dòng)點(diǎn)C的軌跡E的方程;

3)設(shè)直線C點(diǎn)不同A、B)與直線交于R,D為線段的中點(diǎn),證明:直線與曲線E相切;

【答案】1;(2;(3)證明略;

【解析】

1)根據(jù)頂點(diǎn)坐標(biāo)可知,將代入橢圓方程可求得,進(jìn)而得到橢圓方程;(2)設(shè),,可得到,將代入橢圓方程即可得到所求的軌跡方程;(3)設(shè),可得直線方程,進(jìn)而求得點(diǎn)坐標(biāo);利用向量坐標(biāo)運(yùn)算可求得,從而證得結(jié)論.

1)由題意可知:

代入橢圓方程可得:,解得:

橢圓的方程為:

2)設(shè),

軸,可得:,即

代入橢圓方程得:

動(dòng)點(diǎn)的軌跡的方程為:

3)設(shè),則直線方程為:

,解得:

直線與曲線相切

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)當(dāng)時(shí),求函數(shù)的最大值;

2)設(shè),求函數(shù)的最大值;

3)已知,求函數(shù)的最大值;

4)設(shè),且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果A1B1C1的三個(gè)內(nèi)角的余弦值分別等于A2B2C2的三個(gè)內(nèi)角的正弦值,則( )

A.A1B1C1A2B2C2都是銳角三角形

B.A1B1C1A2B2C2都是鈍角三角形

C.A1B1C1是鈍角三角形,A2B2C2是銳角三角形

D.A1B1C1是銳角三角形,A2B2C2是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角AB、C的對(duì)邊,x=(2ac,b),y=(cosB,cosC),且x·y=0.

(1)求B的大小;

(2)若b,求||的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集為R,函數(shù)fx)=lg1x)的定義域?yàn)榧?/span>A,集合B{x|x2x60}

(Ⅰ)求AB

(Ⅱ)若C{x|m1xm+1}CARB)),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】就實(shí)數(shù)的取值范圍,討論關(guān)于的函數(shù) 軸的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)镽,的極大值點(diǎn),以下結(jié)論一定正確的是________

,;

的極小值點(diǎn);

的極小值點(diǎn);

的極小值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某出租車公司為了解本公司出租車司機(jī)對(duì)新法規(guī)的知曉情況,隨機(jī)對(duì)100名出租車司機(jī)進(jìn)行調(diào)查.調(diào)查問卷共10道題,答題情況如下表:

答對(duì)題目數(shù)


8

9



2

13

12

8


3

37

16

9

(1)如果出租車司機(jī)答對(duì)題目數(shù)大于等于9,就認(rèn)為該司機(jī)對(duì)新法規(guī)的知曉情況比較好,試估計(jì)該公司的出租車司機(jī)對(duì)新法規(guī)知曉情況比較好的概率;

(2)從答對(duì)題目數(shù)少于8的出租車司機(jī)中任選出兩人做進(jìn)一步的調(diào)查,求選出的兩人中至少有一名女出租車司機(jī)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品,每售出一噸可獲利萬元,每積壓一噸則虧損萬元.某經(jīng)銷商統(tǒng)計(jì)出過去年里市場(chǎng)年需求量的頻數(shù)分布表如下表所示.

年需求量(噸)

年數(shù)

(1)求過去年年需求量的平均值;(每個(gè)區(qū)間的年需求量用中間值代替)

(2)今年該經(jīng)銷商欲進(jìn)貨噸,以(單位:噸,)表示今年的年需求量,以(單位:萬元)表示今年銷售的利潤,試將表示的函數(shù)解析式,并求今年的年利潤不少于萬元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案