(2012•東城區(qū)二模)將容量為n的樣本中的數(shù)據(jù)分成6組,若第一組至第六組數(shù)據(jù)的頻率之比為2:3:4:6:4:1,且前三組數(shù)據(jù)的頻數(shù)之和等于27,則n的值為( 。
分析:根據(jù)比例關(guān)系設(shè)出各組的頻率,在頻率分布表中,頻數(shù)的和等于樣本容量,頻率的和等于1,求出前三組的頻率,再頻數(shù)和建立等量關(guān)系即可.
解答:解:設(shè)第一組至第六組數(shù)據(jù)的頻率分別為2x,3x,4x,6x,4x,x,
則2x+3x+4x+6x+4x+x=1,
解得x=
1
20
,
所以前三組數(shù)據(jù)的頻率分別是
2
20
,
3
20
,
4
20
,
故前三組數(shù)據(jù)的頻數(shù)之和等于
2n
20
+
3n
20
+
4n
20
=27,
解得n=60.
故答案為60.
點(diǎn)評(píng):小題考查頻率分布直方圖的基礎(chǔ)知識(shí),熟練基本公式是解答好本題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)二模)定義:F(x,y)=yx(x>0,y>0),已知數(shù)列{an}滿(mǎn)足:An=
F(n,2)
F(2,n)
(n∈N+),若對(duì)任意正整數(shù)n,都有an≥ak(k∈N*成立,則ak的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)二模)已知函數(shù)f(x)=-
12
x2+2x-aex

(Ⅰ)若a=1,求f(x)在x=1處的切線(xiàn)方程;
(Ⅱ)若f(x)在R上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)二模)已知函數(shù)f(x)=x
1
2
,給出下列命題:
①若x>1,則f(x)>1;
②若0<x1<x2,則f(x2)-f(x1)>x2-x1;
③若0<x1<x2,則x2f(x1)<x1f(x2);
④若0<x1<x2,則
f(x1)+f(x2)
2
<f(
x1+x2
2
)

其中,所有正確命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)二模)已知函數(shù)f(x)=(a+
1
a
)lnx+
1
x
-x(a>1).
(l)試討論f(x)在區(qū)間(0,1)上的單調(diào)性;
(2)當(dāng)a∈[3,+∞)時(shí),曲線(xiàn)y=f(x)上總存在相異兩點(diǎn)P(x1,f(x1)),Q(x2,f (x2 )),使得曲線(xiàn)y=f(x)在點(diǎn)P,Q處的切線(xiàn)互相平行,求證:x1+x2
6
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)二模)設(shè)M(x0,y0)為拋物線(xiàn)C:y2=8x上一點(diǎn),F(xiàn)為拋物線(xiàn)C的焦點(diǎn),若以F為圓心,|FM|為半徑的圓和拋物線(xiàn)C的準(zhǔn)線(xiàn)相交,則x0的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案