8.已知離心率e=$\frac{\sqrt{5}}{2}$的雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,O為坐標(biāo)原點,以O(shè)F為直徑的圓與雙曲線C的一條漸近線相交于O、A兩點,若△AOF的面積為1,則實數(shù)a的值為( 。
A.1B.$\sqrt{2}$C.2D.4

分析 利用雙曲線的離心率求出漸近線方程,利用三角形的面積,結(jié)合離心率即可得到方程組求出a即可.

解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點為F,O為坐標(biāo)原點,
以O(shè)F為直徑圓與雙曲線C的一條漸近線相交于O,A兩點,
所以FA⊥OA,則FA=b,OA=a,
△AOF的面積為1,
可得$\frac{1}{2}$ab=1,
雙曲線的離心率e=$\frac{\sqrt{5}}{2}$,可得$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+^{2}}{{a}^{2}}$=$\frac{5}{4}$,
即$\frac{a}$=$\frac{1}{2}$,
解得b=1,a=2.
故選:C.

點評 本題考查直線與圓錐曲線的位置關(guān)系的應(yīng)用,雙曲線的簡單性質(zhì),考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=2x的準(zhǔn)線方程為(  )
A.x=1B.x=$\frac{1}{2}$C.x=-1D.x=-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,若輸入n=2017,輸出S的值為0,則f(x)的解析式可以是( 。
A.$f(x)=sin(\frac{π}{3}x)$B.$f(x)=sin(\frac{π}{2}x)$C.$f(x)=cos(\frac{π}{3}x)$D.$f(x)=cos(\frac{π}{2}x)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過點P在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右支上,其左、右焦點分別為F1,F(xiàn)2,PF1的垂直平分線過F2,且原點到直線PF1的距離恰好等于雙曲線的實半軸長,則該雙曲線的離心率為(  )
A.$\frac{7}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)x∈R,則“|x-1|<2”是“x2-4x-5<0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=$\left\{\begin{array}{l}{e^x}+ax,x>0\\ \frac{1}{e^x}-ax,x<0\end{array}$,若函數(shù)f(x)有四個零點,則實數(shù)a的取值范圍是( 。
A.$({-∞,-\frac{1}{e}})$B.(-∞,-e)C.(e,+∞)D.$({\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$|$\overline$|,且($\overrightarrow{a}$-$\overrightarrow$)⊥(2$\overrightarrow{a}$+3$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$夾角的大小為$\frac{3}{4}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.拋物線y=9x2的焦點坐標(biāo)為(0,$\frac{1}{36}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.?dāng)M定從甲地到乙地通話m分鐘的電話費由f(m)=1.06(0.5•{m}+1)(元)決定,其中m>0,{m}是大于或等于m的最小整數(shù),(如:{3}=3,{3.8}=4,{3.1}=4),則從甲地到乙地通話時間為5.5分鐘的電話費為(  )
A.3.71元B.3.97元C.4.24元D.4.77元

查看答案和解析>>

同步練習(xí)冊答案