11.交通管理部門為了解機動車駕駛員(簡稱駕駛員)對某新法規(guī)的知曉情況,對甲、乙、丙、丁四個社區(qū)做分層抽樣調(diào)查.假設(shè)四個社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個社區(qū)抽取駕駛員的人數(shù)分別為8,23,27,43,則這四個社區(qū)駕駛員的總?cè)藬?shù)N為(  )
A.101B.808C.1212D.2012

分析 根據(jù)甲社區(qū)有駕駛員96人,在甲社區(qū)中抽取駕駛員的人數(shù)為8求出每個個體被抽到的概率,然后求出樣本容量,從而求出總?cè)藬?shù).

解答 解:∵甲社區(qū)有駕駛員96人,在甲社區(qū)中抽取駕駛員的人數(shù)為8
∴每個個體被抽到的概率為$\frac{8}{96}$=$\frac{1}{12}$
樣本容量為8+23+27+43=101
∴這四個社區(qū)駕駛員的總?cè)藬?shù)N為101÷$\frac{1}{12}$=1212.
故選C.

點評 本題主要考查了分層抽樣,分層抽樣是最經(jīng)常出現(xiàn)的一個抽樣問題,這種題目一般出現(xiàn)在選擇或填空中,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=acosx+b的最大值為1,最小值為-3,試確定$f(x)=bsin(ax+\frac{π}{3})$的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)y=3sin($\frac{1}{2}$x-$\frac{π}{4}$)

(1)求此函數(shù)的振幅、周期和初相;
(2)用五點法在給定的坐標(biāo)系中作出函數(shù)一個周期的圖象.(先列表再作圖)
$\frac{1}{2}$x-$\frac{π}{4}$
x
3sin($\frac{1}{2}$x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某校高二(1)班每周都會選出兩位“遲到之星”,期中考試之前一周“遲到之星”人選揭曉之前,小馬說:“兩個人選應(yīng)該是在小趙、小宋和小譚三人之中產(chǎn)生”,小趙說:“一定沒有我,肯定有小宋”,小宋說:“小馬、小譚二人中有且僅有一人是遲到之星”,小譚說:“小趙說的對”.已知這四人中有且只有兩人的說法是正確的,則“遲到之星”是( 。
A.小趙、小譚B.小馬、小宋C.小馬、小譚D.小趙、小宋

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點P(4,0)關(guān)于直線5x+4y+21=0的對稱點的坐標(biāo)是(-6,-8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知一只螞蟻在邊長為4的正三角形內(nèi)爬行,則此螞蟻到三角形三個頂點的距離均超過1的概率為( 。
A.$\frac{\sqrt{3}π}{12}$B.$\frac{\sqrt{3}π}{24}$C.1-$\frac{\sqrt{3}π}{12}$D.1-$\frac{\sqrt{3}π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.有10張卡片,其中8張標(biāo)有數(shù)字3,2張標(biāo)有數(shù)字5,從中任意抽出3張卡片,設(shè)3張卡片上的數(shù)字之和為X,求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下四個式子的值都等于同一個常數(shù):
(1)cos(-60°)+cos60°+cos180°;     
(2)cos(-27°)+cos107°+cos227°;
(3)cos30°+cos150°+cos270°;     
 (4)cos40°+cos160°+cos280°.
(Ⅰ)試從上述四個式子中選擇一個式子,進(jìn)行化簡求值;
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,請你寫出一個以題設(shè)的四個式子為特例的一般性命題,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^3}\\-{x^3}\end{array}\right.\begin{array}{l}x≥0,\\ x<0,\end{array}$,若f(3a-1)≥8f(a),則實數(shù)a的取值范圍為$({-∞,\frac{1}{5}}]∪[{1,+∞})$.

查看答案和解析>>

同步練習(xí)冊答案