已知向量a=,b=,設函數(shù)=ab.
(Ⅰ)求的單調(diào)遞增區(qū)間;
(Ⅱ)若將的圖象向左平移個單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最大值和最小值.

(Ⅰ)f(x)的遞增區(qū)間是[-+kπ,+kπ]( k∈Z);(II)最大值為+1,最小值為0.

解析試題分析:(Ⅰ)將f(x)=a•b=2sin2x+2sinxcosx降次化一,化為的形式,然后利用正弦函數(shù)的單調(diào)區(qū)間,即可求得其單調(diào)遞增區(qū)間.(II)將的圖象向左平移個單位,則將換成得到函數(shù)的解析式g(x)=sin[2(x+)-]+1=sin(2x+)+1.由≤x≤≤2x+,結合正弦函數(shù)的圖象可得0≤g(x)≤+1,從而得g(x)的最大值和最小值.
試題解析:(Ⅰ)f(x)=a•b=2sin2x+2sinxcosx
=+sin2x
=sin(2x-)+1,                3分
由-+2kπ≤2x-+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z,
∴f(x)的遞增區(qū)間是[-+kπ,+kπ](k∈Z).            6分
(II)由題意g(x)=sin[2(x+)-]+1=sin(2x+)+1,    9分
≤x≤≤2x+,
∴ 0≤g(x)≤+1,即 g(x)的最大值為+1,g(x)的最小值為0.   12分
考點:1、向量及三角恒等變換;2、三角函數(shù)的單調(diào)區(qū)間及范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù). 的部分圖象如圖所示,其中點是圖象的一個最高點.

(1)求函數(shù)的解析式;
(2)已知,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=sin ωx-sin2(ω>0)的最小正周期為π.
(1)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當x時,求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的周期為.

(1)若,求它的振幅、初相;
(2)在給定的平面直角坐標系中作出該函數(shù)在的圖像;
(3)當時,根據(jù)實數(shù)的不同取值,討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的最小正周期和圖像的對稱軸方程;
(2)求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),鈍角(角對邊為)的角滿足.
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設平面向量,,函數(shù)。
(Ⅰ)求函數(shù)的值域和函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當,且時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若點在角的終邊上,求的值;(Ⅱ)若,求的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(Ⅰ)已知函數(shù))的最小正周期為.求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)在中,角對邊分別是,且滿足.若,的面積為.求角的大小和邊b的長.

查看答案和解析>>

同步練習冊答案