【題目】函數(shù)f(x)= 的定義域是;值域是

【答案】(﹣∞,2)∪(2,+∞);(﹣∞,3)∪(3,+∞)
【解析】解:由題意:分母不能為0,即x﹣2≠0, 解得:x≠2,
∴函數(shù)的定義域為(﹣∞,2)∪(2,+∞);
函數(shù)f(x)= 化簡可得:f(x)= =3+
≠0
∴f(x)≠3
∴函數(shù)的值域為(﹣∞,3)∪(3,+∞).
所以答案是:(﹣∞,2)∪(2,+∞);(﹣∞,3)∪(3,+∞).
【考點精析】掌握函數(shù)的定義域及其求法和函數(shù)的值域是解答本題的根本,需要知道求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,點的極坐標(biāo)方程為.

(1)求點的直角坐標(biāo),并求曲線的普通方程;

(2)設(shè)直線與曲線的兩個交點為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+2.
(1)求f(x)單調(diào)區(qū)間
(2)求f(x)在區(qū)間[ ,3]上的最大值和最小值;
(3)若g(x)=f(x)﹣mx在[2,4]上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在以為直徑的圓上, 垂直于圓所在的平面, 的重心.

(1)求證:平面平面

(2)若,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,且為常數(shù)).

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若對于任意的,都有成立,求的取值范圍;

(3)若方程上有且只有一個實根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知由甲、乙兩位男生和丙、丁兩位女生組成的四人沖關(guān)小組,參加由安徽衛(wèi)視推出的大型戶外競技類活動《男生女生向前沖》.活動共有四關(guān),若四關(guān)都闖過,則闖關(guān)成功,否則落水失敗.設(shè)男生闖過一至四關(guān)的概率依次是,女生闖過一至四關(guān)的概率依次是.

(Ⅰ)求男生甲闖關(guān)失敗的概率;

(Ⅱ)設(shè)表示四人沖關(guān)小組闖關(guān)成功的人數(shù),求隨機(jī)變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機(jī)抽取一個容量為7的樣本進(jìn)行分析.

(1)如果按照性別比例分層抽樣,可得到多少個不同的樣本?(寫出算式即可,不必計算出結(jié)果)

(2)如果隨機(jī)抽取的7名同學(xué)的數(shù)學(xué),物理成績(單位:分)對應(yīng)如下表:

若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過定點,并且內(nèi)切于定圓.

(1)求動圓圓心的軌跡方程;

(2)若上存在兩個點,(1)中曲線上有兩個點,并且三點共線, 三點共線, ,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列幾種說法: ①若logablog3a=1,則b=3;
②若a+a1=3,則a﹣a1= ;
③f(x)=log(x+ 為奇函數(shù);
④f(x)= 為定義域內(nèi)的減函數(shù);
⑤若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且f(2)=1,則f(x)=log x,其中說法正確的序號為

查看答案和解析>>

同步練習(xí)冊答案