在平面直角坐標(biāo)系中,點(diǎn)P是不等式組 
x-2y+2≥0
x+y-1≥0
x≤2
所確定的平面區(qū)域內(nèi)的動(dòng)點(diǎn),Q是直線2x+y=0上的任意一點(diǎn),O為坐標(biāo)原點(diǎn),則|
OP
+
OQ
|的最小值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合,結(jié)合向量的基本運(yùn)算即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域:
設(shè)P(x,y),
∵Q在直線2x+y=0上,
∴設(shè)Q(a,-2a),
OP
+
OQ
=(x+a,y-2a),
則|
OP
+
OQ
|=
(x+a)2+(y-2a)2

設(shè)z=|
OP
+
OQ
|=
(x+a)2+(y-2a)2
,
則z的幾何意義為平面區(qū)域內(nèi)的動(dòng)點(diǎn)P到動(dòng)點(diǎn)Q的距離的最小值,
由圖象可知當(dāng)P位于點(diǎn)A(0,1)時(shí),
Q為P在直線2x+y=0的垂足時(shí),
z取得最小值為d=|AD|=
|1|
22+12
=
1
5
=
5
5
,
故答案為:
5
5
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用平面向量的基本運(yùn)算,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面四邊形ABCD為矩形,PA=PD,AD=
2
AB=2,且平面PAD⊥平面.4BCD.
(Ⅰ)求證:PC⊥BD;
(Ⅱ)若四棱錐P-ABCD的體積為
4
2
3
,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=
2xlnx
1-x2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從某校高三年級(jí)隨機(jī)抽取一個(gè)班,對(duì)該班50名學(xué)生的高校招生體檢表中的視力情況進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.若某高校A專業(yè)對(duì)視力的要求在0.9以上,則該班學(xué)生中能報(bào)A專業(yè)的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(-10,0)引直線l與曲線y=-
50-x2
相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積取最大值時(shí),直線l的斜率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓O的兩條弦AC,BD相交于點(diǎn)P,若AP=2,PC=1圓0的半徑為3,則OP=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a和b分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+|a-b|x+1=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).則ξ的數(shù)學(xué)期望是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,點(diǎn)M滿足
BM
=3
MC
,則sin∠BAM的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-1)[x2+(a+1)x+a+b+1]的三個(gè)零點(diǎn)值分別可以作為拋物線、橢圓、雙曲線的離心率,則a2+b2的取值范圍是( 。
A、[
5
,+∞)
B、(
5
,+∞)
C、[5,+∞)
D、(5,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案