12.點M(2,1)到拋物線y=ax2準線的距離為2,則a的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{12}$C.$\frac{1}{4}$或$-\frac{1}{12}$D.$-\frac{1}{4}$或$\frac{1}{12}$

分析 求出拋物線的準線方程,利用已知條件列出方程求解即可.

解答 解:拋物線y=ax2的標準方程為:x2=$\frac{1}{a}$y,a>0時,準線方程為:y=-$\frac{1}{4a}$,a<0時準線方程為:y=$\frac{1}{4a}$
點M(2,1)到拋物線y=ax2準線的距離為2,
可得1+$\frac{1}{4a}$=2,解得a=$\frac{1}{4}$,-$\frac{1}{4a}$-1=2,解得a=-$\frac{1}{12}$.
故選:C.

點評 本題考查拋物線方程的簡單性質的應用,注意拋物線方程的標準方程的應用,是易錯題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知向量$\overrightarrow a=(2cosx,\sqrt{3}),\overrightarrow b=(sinx,cos2x)$,設f(x)=$\overrightarrow a•\overrightarrow b$,$g(x)=mcos(2x-\frac{π}{6})-2m+3(m>0)$,若對任意${x_1}∈[0,\frac{π}{4}]$都存在${x_2}∈[0,\frac{π}{4}]$,使得g(x1)=f(x2)成立.則實數(shù)m的取值范圍是( 。
A.$[\frac{2}{3},2)$B.$(\frac{2}{3},2]$C.$[1,\frac{4}{3}]$D.$(1,\frac{4}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=x2-2x+2,x∈[0,3],則函數(shù)的值域為[1,5].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.根據(jù)下列算法語句,

當輸入x為70時,輸出y的值為31.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.關于x的方程$\sqrt{1-{x^2}}+a=x$有兩個不相等實數(shù)根,則實數(shù)a的取值范圍是( 。
A.$(1,\sqrt{2}]$B.$(-1,\sqrt{2}]$C.$(-\sqrt{2},-1]$D.$(-\sqrt{2},1]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=|x-2|-|x-5|.
(Ⅰ)求函數(shù)f(x)的值域;
(Ⅱ)不等式f(x)+2m-1≥0對于任意的x∈R都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)y=f(x)是R上的可導函數(shù),當x≠0時,有$f'(x)+\frac{f(x)}{x}>0$,則函數(shù)$F(x)=x•f(x)-\frac{1}{x}$的零點個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an}的通項公式an=3n+1,求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知$f(α)=\frac{{cos({\frac{π}{2}+α})•cos({2π-α})•sin({\frac{3π}{2}-α})}}{{sin({-π-α})•sin({\frac{3π}{2}+α})}}$,
(1)化簡f(α);
(2)若α是第三象限角,且$sinα=-\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

同步練習冊答案