已知tanα=-
3
4
,求sinα,cosα的值.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:根據(jù)tanα的值,分象限考慮,利用同角三角函數(shù)間的基本關(guān)系求出sinα與cosα的值即可.
解答: 解:由tanα=
sinα
cosα
=-
3
4
<0,得到α為第二象限或第四象限角,
當(dāng)α為第二象限角時,sinα>0,cosα<0,
此時cosα=-
1
1+tan2α
=-
4
5
,sinα=
1-cos2α
=
3
5
;
當(dāng)α為第四象限角時,sinα<0,cosα>0,
此時cosα=
1
1+tan2α
=
4
5
,sinα=-
1-cos2α
=-
3
5
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+1
1-ax
(a>0且a≠0),函數(shù)g(x)與f(x)的圖象關(guān)于y=x對稱.
(1)求g(x)的解析式;
(2)判斷g(x)在(1,+∞)內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=
sin(α-3π)cos(2π-α)sin(-α+
2
)
cos(-π-α)sin(-π-α)

(1)化簡f(α);
(2)若α=-
31π
3
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

n個人互相傳球,由甲開始發(fā)球,經(jīng)過m次傳球后,球仍回到甲的手中,一共有多少種傳法?(m≥2,n≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求不等式(x-2)(1-3x)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x,sinx),
b
=(ex,0),若f(x)=
a
b
,則f(x)在x=1處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x=acosφ
y=bsinφ
(a>b>0),參數(shù)φ的范圍是(0≤φ<2π)的兩個焦點為F1、F2,以F1F2為邊作正三角形,若橢圓恰好平分正三角形的另兩條邊,且|F1F2|=4,則a等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合D是滿足方程y=x2的有序?qū)崝?shù)對(x,y)的集合,則-1
 
D,(-1,1)
 
D.(填“∈”或“∉”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
9
+
y2
4
=1的左焦點為F1,右焦點為F2,點P在橢圓上,則
PF1
PF2
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案