3.(1)化簡(jiǎn):$\frac{{({2{a^{\frac{2}{3}}}{b^{\frac{1}{2}}}})({-6\sqrt{a}\root{3}})}}{{3{a^{\frac{1}{6}}}{b^{\frac{5}{6}}}}}$;
(2)求值:log535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514+10lg3

分析 (1)利用有理指數(shù)冪的胎死腹中化簡(jiǎn)求解即可.
(2)利用對(duì)數(shù)運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:(1)$\frac{{({2{a^{\frac{2}{3}}}{b^{\frac{1}{2}}}})({-6\sqrt{a}\root{3}})}}{{3{a^{\frac{1}{6}}}{b^{\frac{5}{6}}}}}=\frac{{2•({-6})}}{3}{a^{\frac{2}{3}+\frac{1}{2}-\frac{1}{6}}}{b^{\frac{1}{2}+\frac{1}{3}-\frac{5}{6}}}=-4a{b^0}=-4a$…(6分)
(2)log535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514+10g3
=1+log57-log0.50.5+log550-log57-log52+3
=1+log57-1+2+log52-log57-log52+3
=1-1+2+3=5.    ….(12分)

點(diǎn)評(píng) 本題考查有理指數(shù)冪的運(yùn)算法則以及對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知小矩形花壇ABCD中,AB=3m,AD=2m,現(xiàn)要將小矩形花壇建成大矩形花壇AMPN,使點(diǎn)B在AM上,點(diǎn)D在AN上,且對(duì)角線MN過(guò)點(diǎn)C.
(1)要使矩形AMPN的面積大于32m2,AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)M,N是否存在這樣的位置,使矩形AMPN的面積最?若存在,求出這個(gè)最小面積及相應(yīng)的AM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.甲、乙兩地相距200千米,汽車從甲地勻速行駛到乙地,速度不得超過(guò)50千米/時(shí).已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為0.02;固定部分為50(元/時(shí)).
(1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出定義域;
(2)用單調(diào)性定義證明(1)中函數(shù)的單調(diào)性,并指出汽車應(yīng)以多大速度行駛可使全程運(yùn)輸成本最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列函數(shù)中在(0,+∞)上為增函數(shù)的是(  )
A.y=x2-2x+3B.y=($\frac{1}{2}$)xC.y=-$\frac{1}{x}$D.y=|x-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若集合A={x|kx2-2x-1=0}只有一個(gè)元素,則實(shí)數(shù)k的取值集合為( 。
A.{-1}B.{0}C.{-1,0}D.(-∞,-1]∪{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,-4).若$\overrightarrow{a}$與$\overrightarrow$( 。
A.垂直B.不垂直也不平行C.平行且同向D.平行且反向

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知正方形ABCD邊長(zhǎng)為1,E是線段CD的中點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{BD}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知{an}是等比數(shù)列,a2=2且公比q>0,-2,a1,a3成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)已知bn=anan+2-λnan+1(n=1,2,3,…),設(shè)Sn是數(shù)列{bn}的前n項(xiàng)和.若S1>S2,且Sk<Sk+1(k=2,3,4,…),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}(n∈N*)是公差不為0的等差數(shù)列,若a1=1,且a2,a4,a8成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案