17.比較大小:$\sqrt{11}$+$\sqrt{7}$>$\sqrt{13}+\sqrt{5}$.

分析 先平方,再比較即可.

解答 解:∵($\sqrt{11}$+$\sqrt{7}$ )2=18+2$\sqrt{77}$,($\sqrt{13}+\sqrt{5}$)2=18+2$\sqrt{65}$,
又77>65,
∴2$\sqrt{77}$>2$\sqrt{65}$,
∴18+2$\sqrt{77}$>18+2$\sqrt{65}$,
∴($\sqrt{11}$+$\sqrt{7}$ )2>($\sqrt{13}+\sqrt{5}$)2,
∴$\sqrt{11}$+$\sqrt{7}$>$\sqrt{13}+\sqrt{5}$,
故答案為:>

點(diǎn)評(píng) 本題考查不等式的大小比較,利用了綜合法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知復(fù)數(shù)z=2+3i,則|z|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)=-$\frac{5}{2}$x+b在區(qū)間(0,2)有兩個(gè)不等實(shí)根,求實(shí)數(shù)b的取值范圍;
(4)對(duì)于n∈N*,證明:$\frac{2}{1^2}+\frac{3}{2^2}+\frac{4}{3^2}+…+\frac{n+1}{n^2}>ln(n+1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為了了解青少年的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)30名青少年進(jìn)行調(diào)查,得到如下列聯(lián)表:
常  喝不常喝總  計(jì)
肥  胖2
不肥胖18
總  計(jì)30
已知從這30名青少年中隨機(jī)抽取1名,抽到肥胖青少年的概率為$\frac{4}{15}$.
(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;(2)是否有99.5%的把握認(rèn)為青少年的肥胖與常喝碳酸飲料有關(guān)?
獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.當(dāng)實(shí)數(shù)m為何值時(shí),z=$\frac{{m}^{2}-m-6}{m+3}$+(m2+5m+6)i
(1)為虛數(shù); 
(2)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)的第二象限內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是某幾何體挖去一部分后得到的三視圖,其中主視圖和左視圖相同都是一個(gè)等腰梯形及它的內(nèi)切圓,俯視圖中有兩個(gè)邊長分別為2和8的正方形且圖中的圓與主視圖圓大小相等并且圓心為兩個(gè)正方形的中心.問該幾何體的體積是(  )
A.$\frac{420-32π}{3}$B.$\frac{336-32π}{3}$C.$\frac{168-4π}{3}$D.$\frac{168\sqrt{2}-64\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“現(xiàn)代五項(xiàng)”是由現(xiàn)代奧林匹克之父顧拜旦先生創(chuàng)立的運(yùn)動(dòng)項(xiàng)目,包含射擊、擊劍、游泳、馬術(shù)和越野跑五項(xiàng)運(yùn)動(dòng).已知甲、乙、丙共三人參加“現(xiàn)代五項(xiàng)”.規(guī)定每一項(xiàng)運(yùn)動(dòng)的前三名得分都分別為a,b,c(a>b>c且a,b,c∈N*),選手最終得分為各項(xiàng)得分之和.已知甲最終得22分,乙和丙最終各得9分,且乙的馬術(shù)比賽獲得了第一名,則游泳比賽的第三名是( 。
A.B.C.D.乙和丙都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若復(fù)數(shù)z滿足(1+2i)2z=1+z,則其共軛復(fù)數(shù)$\overline{z}$為( 。
A.$\frac{1}{8}$+$\frac{1}{8}$iB.-$\frac{1}{8}$-$\frac{1}{8}$iC.-$\frac{1}{8}$+$\frac{1}{8}$iD.$\frac{1}{8}$-$\frac{1}{8}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知sinx+cosx=$\frac{1}{2}$(0<x<π),求cosx,tanx
(2)已知cos($\frac{5π}{12}$+α)=$\frac{1}{3}$,-π<α<-$\frac{π}{2}$,求cos($\frac{π}{12}$-α)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案