17.設(shè)平面向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-2,y),若$\overrightarrow a$∥$\overrightarrow b$,則|$\overrightarrow a+3\overrightarrow b}$|=5$\sqrt{5}$.

分析 利用向量共線的充要條件求出y,然后求解所求的表達(dá)式的模.

解答 解:平面向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-2,y),若$\overrightarrow a$∥$\overrightarrow b$,
可得y=-4.
$\overrightarrow a+3\overrightarrow b}$=(-5,-10).
則|$\overrightarrow a+3\overrightarrow b}$|=$\sqrt{(-5)^{2}+(-10)^{2}}$=5$\sqrt{5}$.
故答案為:5$\sqrt{5}$.

點(diǎn)評(píng) 本題考查向量的坐標(biāo)運(yùn)算,向量的模的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,M、N分別是AB、AC的一個(gè)三等分點(diǎn),且$\overrightarrow{MN}$=λ($\overrightarrow{AC}$-$\overrightarrow{AB}$)成立,則λ=( 。
A.$\frac{1}{2}$B.±$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=$\frac{{e}^{x}}{1+a{x}^{2}}$,其中a為正實(shí)數(shù).
(1)當(dāng)a=$\frac{4}{3}$時(shí),求f(x)的極值點(diǎn),并指出是極大值點(diǎn)還是極小值點(diǎn);
(2)若f(x)為實(shí)數(shù)集R上的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)y=Asin(ωx+φ)(ω>0,φ>0)滿足:在一個(gè)周期內(nèi),當(dāng)x=-$\frac{2}{5}$π時(shí),函數(shù)有最大值2,當(dāng)x=$\frac{8}{5}$π時(shí),函數(shù)有最小值-2.
(1)求實(shí)數(shù)A,ω,φ的值;
(2)求該函數(shù)的單調(diào)增區(qū)間;
(3)用五點(diǎn)作圖法作出這個(gè)函數(shù)的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線y=xcosθ+1,(θ∈R)的傾斜角的范圍是$[0,\frac{π}{4}]$∪$[\frac{3π}{4},π)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.甲、乙同時(shí)向一敵機(jī)開炮,已知甲擊中敵機(jī)的概率為0.7,乙擊中的概率為0.6求:
(1)恰有一人擊中敵機(jī)的概率;
(2)敵機(jī)被擊中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知如圖是某NBA球員連續(xù)10場常規(guī)賽得分的莖葉圖,則該球員這10場比賽的場均得分為( 。
A.17.3B.17.5C.18.2D.18.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知空集是集合A={x|x2+x+a=0}的真子集,則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在等比數(shù)列{an}中,若a1+a2+a3=8,a4+a5+a6=-4,則a13+a14+a15=$\frac{1}{2}$ .

查看答案和解析>>

同步練習(xí)冊(cè)答案