設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
x-2y-1
y-2
的取值范圍是(  )
A、[-
9
4
,-
1
2
]
B、(-∞,-
9
4
]∪[-
1
2
,+∞)
C、(-
9
4
,-
1
2
)
D、(-∞,-
9
4
)∪(-
1
2
,+∞)
分析:畫出可行域,將目標函數(shù)變形,賦予幾何意義,是可行域中的點與點(5,2)連線的斜率的倒數(shù)減去2;由圖求出取值范圍.
解答:精英家教網(wǎng)解:畫出可行域
x-2y-1
y-2
=
x-5
y-2
-2

設(shè)k=
y-2
x-5
表示可行域中的點與點(5,2)連線的斜率,
由圖知k∈(-4, 0)∪ (0,
2
3
)

x-2y-1
y-2
=
x-5
y-2
-2=
1
k
-2

x-2y-1
y-2
∈(-∞,-
9
4
]∪[-
1
2
,+∞)

故選D
點評:本題考查畫出可行域、關(guān)鍵將目標函數(shù)通過分離參數(shù)變形,賦予其幾何意義、考查數(shù)形結(jié)合的數(shù)學思想方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習冊答案