在同一平面直角坐標(biāo)系中,經(jīng)過伸縮變換 
x′=5x
y′=3y
 后,曲線C變?yōu)榍x′2+y′2=1則曲線C的方程為
 
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:
x′=5x
y′=3y
代入曲線x′2+y′2=1,即可得出.
解答:解:把
x′=5x
y′=3y
代入曲線x′2+y′2=1,可得(5x)2+(3y)2=1,化為25x2+9y2=1,即為曲線C的方程.
故答案為:25x2+9y2=1.
點(diǎn)評:本題考查了曲線的變換公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線
x=1+t
y=-3
3
+
3
t
(t為參數(shù))與圓x2+y2=16交于A,B,則AB中點(diǎn)M的極坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩曲線C1
x=t
y=t+1
(t為參數(shù))與C2:ρ=4sinθ相交于A、B兩點(diǎn),則兩點(diǎn)的距離|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將參數(shù)方程
x=e2+e-2
y=2(e2-e-2)
(e為參數(shù))化為普通方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程是
x=t+1
y=t-3
(t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4cosθ,則直線l被圓C截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:
x=    1+t
y=-5+
3
t
(t為參數(shù))與曲線C:ρ2-2ρcosθ-4ρsinθ+3=0,
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)判斷l(xiāng)與C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=-
3
t
y=-2+t
,(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cos(θ-
π
3
).
(1)求直線l的參數(shù)方程化為普通方程,將圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求圓C上的點(diǎn)到直線l距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(ex-e-x)•sinx的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都實(shí)驗(yàn)外國語高三11月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

某公司計劃在迎春節(jié)聯(lián)歡會中設(shè)一項(xiàng)抽獎活動:在一個不透明的口袋中裝入外形一樣號碼分別為1,2,3, ,10的十個小球.活動者一次從中摸出三個小球,三球號碼有且僅有兩個連號的為三等獎,獎金30元;三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金.

(1)求員工甲抽獎一次所得獎金ξ的分布列與期望;

(2)員工乙幸運(yùn)地先后獲得四次抽獎機(jī)會,他得獎次數(shù)的方差是多少?

 

查看答案和解析>>

同步練習(xí)冊答案