【題目】某生鮮超市每天從蔬菜生產(chǎn)基地購進某種蔬菜,每天的進貨量相同,進價6/千克,售價9/千克,當(dāng)天未售出的蔬菜被生產(chǎn)基地以2/千克的價格回收處理.該超市發(fā)現(xiàn)這種蔬菜每天都有剩余,為此整理了過往30天這種蔬菜的日需求量(單位:千克),得到如下統(tǒng)計數(shù)據(jù):

日需求量

160

170

180

190

200

210

220

天數(shù)

3

6

6

9

4

1

1

以這30天記錄的各日需求量的頻率作為各日需求量的概率,假設(shè)各日需求量相互獨立.

1)求在未來的3天中,至多有1天的日需求量不超過190千克的概率;

2)超市為了減少浪費,提升利潤,決定調(diào)整每天的進貨量(單位:千克),以銷售這種蔬菜的日利潤的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個?

【答案】1;(2)應(yīng)選

【解析】

1)根據(jù)統(tǒng)計數(shù)據(jù)可計算出日需求量不超過的概率,利用獨立事件概率公式可計算得到結(jié)果;

2)分別計算出時日利潤所有可能的取值,并得到對應(yīng)的概率,根據(jù)數(shù)學(xué)期望的計算公式得到兩個數(shù)學(xué)期望,由大小關(guān)系確定結(jié)果.

1)由表格數(shù)據(jù)知:日需求量不超過的概率

記“未來的天中,至多有天的日需求量不超過”為事件

.

2)設(shè)日利潤為元.

①當(dāng)時,若,則,

,則,若,則,

;;,

的分布列為:

;

②當(dāng)時,若,則

,則,若,則,

,則,若,則,

;;

;

的分布列為:

;

時的日利潤的期望值大于時日利潤的期望值,故應(yīng)選

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足: , ,

(1)求數(shù)列的通項公式;

(2)設(shè)數(shù)列的前項和為,且滿足,試確定的值,使得數(shù)列為等差數(shù)列;

(3)將數(shù)列中的部分項按原來順序構(gòu)成新數(shù)列,且,求證:存在無數(shù)個滿足條件的無窮等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)為奇函數(shù),且有極小值

1)求實數(shù)的值;

2)求實數(shù)的取值范圍;

3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)當(dāng)時,求證:時,;

(Ⅱ)當(dāng)時,計論函數(shù)的極值點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體中,,,過的截面的面積為,則的最小值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若曲線與直線相切,求的值.

Ⅱ)若設(shè)求證:有兩個不同的零點,且.(為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其圖象相鄰的最高點之間的距離為,將函數(shù)的圖象向左平移個單位長度后得到函數(shù)的圖象,且為奇函數(shù),則(

A.的圖象關(guān)于點對稱B.的圖象關(guān)于點對稱

C.上單調(diào)遞增D.上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)設(shè),且函數(shù)的解析式可以表示成,當(dāng)函數(shù)有且只有一個零點時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,討論極值點的個數(shù);

2)若函數(shù)有兩個零點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案