【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),直線的斜率為1,在軸上的截距為2
(1)在直角坐標(biāo)系中以O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)M的極坐標(biāo)為,判斷點(diǎn)M與直線的位置關(guān)系;
(2)設(shè)點(diǎn)A是曲線C上的任意點(diǎn),求它到直線的距離的最大值
【答案】(1)點(diǎn)在線上;(2)
【解析】
(1)求出直線的直角坐標(biāo)方程和點(diǎn)的直角坐標(biāo),將的直角坐標(biāo)代入滿足的方程,故點(diǎn)在直線上;
(2)根據(jù)曲線的參數(shù)方程設(shè)出的坐標(biāo),利用點(diǎn)到直線的距離公式和三角函數(shù)的性質(zhì)可得.
(1)直線的方程為,
把極坐標(biāo)系下的點(diǎn)化為直角坐標(biāo),得,
因?yàn)?/span>的直角坐標(biāo)滿足直線的方程,
所以點(diǎn)在直線上,
(2)因?yàn)辄c(diǎn)在曲線上,故可設(shè)點(diǎn)的坐標(biāo)為,
從而點(diǎn)到直線的距離為,
由此得,當(dāng)時,取得最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(1)求曲線C和直線的直角坐標(biāo)系方程;
(2)已知直線與曲線C相交于A,B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題,大概意思如下:在下雨時,用一個圓臺形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為1尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸;③臺體的體積)( )
A.3寸B.4寸C.5寸D.6寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1) 求的值;
(2) 若商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣a(x2+x+1).
(1)當(dāng)a=1時,證明:f(x)+x2≥0;
(2)當(dāng)a時,判斷函數(shù)f(x)的單調(diào)性;
(3)若函數(shù)f(x)有三個零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若曲線在點(diǎn)處的切線與直線平行,求與滿足的關(guān)系;
(2)當(dāng)時,討論的單調(diào)性;
(3)當(dāng)時,對任意的,總有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,濟(jì)南公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動推出的天數(shù), 表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表所示:
根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi), 與(均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測活動推出第天使用掃碼支付的 人次;
(3)推廣期結(jié)束后,車隊(duì)對乘客的支付方式進(jìn)行統(tǒng)計,結(jié)果如下
車隊(duì)為緩解周邊居民出行壓力,以萬元的單價購進(jìn)了一批新車,根據(jù)以往的經(jīng)驗(yàn)可知,每輛車每個月的運(yùn)營成本約為萬元.已知該線路公交車票價為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預(yù)計該車隊(duì)每輛車每個月有萬人次乘車,根據(jù)給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費(fèi)標(biāo)準(zhǔn),假設(shè)這批車需要年才能開始盈利,求的值.
參考數(shù)據(jù):
其中其中
參考公式:
對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).其中.
(1)討論函數(shù)的單調(diào)性;
(2)函數(shù)在處存在極值-1,且時,恒成立,求實(shí)數(shù)的最大整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在實(shí)數(shù)集R上的奇函數(shù),且在區(qū)間上是單調(diào)遞增,若,則的取值范圍為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com