分析 (1)四棱錐A1-ABCD的體積${V}_{{A}_{1}-ABCD}$=$\frac{1}{3}{S}_{矩形ABCD}×A{A}_{1}$,由此能求出結(jié)果.
(2)由DD1∥CC1,知∠A1CC1是異面直線A1C與DD1所成角(或所成角的補角),由此能求出異面直線A1C與DD1所成角的大。
解答 解:(1)∵長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=3,
∴四棱錐A1-ABCD的體積:
${V}_{{A}_{1}-ABCD}$=$\frac{1}{3}{S}_{矩形ABCD}×A{A}_{1}$=$\frac{1}{3}×AB×AD×A{A}_{1}$=$\frac{1}{3}×2×2×3$=4.
(2)∵DD1∥CC1,∴∠A1CC1是異面直線A1C與DD1所成角(或所成角的補角),
∵tan∠A1CC1=$\frac{{A}_{1}{C}_{1}}{C{C}_{1}}$=$\frac{\sqrt{{2}^{2}+{2}^{2}}}{3}$=$\frac{2\sqrt{2}}{3}$,
∴$∠{A}_{1}C{C}_{1}^{\;}$=$arctan\frac{{2\sqrt{2}}}{3}$.
∴異面直線A1C與DD1所成角的大小為$arctan\frac{{2\sqrt{2}}}{3}$;
點評 本題考查三棱錐的體積的求法,考查異面直線所成角的求法,是中檔題,解題時要認真審題,注空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
Asin(ωx+φ) | 0 | $\sqrt{2}$ | -$\sqrt{2}$ | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com