8.已知等比數(shù)列{an}中,4a1,a3,2a2成等差數(shù)列,則公比q=(  )
A.2B.-1或-2C.-1或2D.-1

分析 根據(jù)等差數(shù)列與等比數(shù)列的通項公式,列出方程即可求出公比q的值.

解答 解:設(shè)等比數(shù)列{an}的公比為q(q≠0),
∵4a1,a3,2a2成等差數(shù)列,
∴2a3=2a2+4a1,
∵a1≠0,
∴q2-q-2=0,
解得q=2或q=-1.
故選:C.

點評 本題考查了等差與等比數(shù)列的通項公式的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{x}{lnx}-ax(x>0$且x≠1).
(1)當(dāng)a=0時,求函數(shù)f(x)的極小值;
(2)若函數(shù)f(x)在(1,+∞)上為減函數(shù),求實數(shù)a的最小值;
(3)若?x∈[e,e2],使f(x)≤$\frac{1}{4}$成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x-2m在[0,$\frac{π}{2}$]上有兩個零點,則m的取值范圍為( 。
A.[$\frac{1}{2}$,1)B.($\frac{1}{2}$,1]C.[$\frac{\sqrt{3}}{2}$,1)D.($\frac{\sqrt{3}}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱之為三角形的歐拉線.若△ABC的頂點A(2,0),B(0,4),且△ABC的歐拉線的方程為x-y+2=0,則頂點C的坐標(biāo)為( 。
A.(-4,0)B.(-4,-2)C.(-2,2)D.(-3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義函數(shù)F(a,b)=$\frac{1}{2}$(a+b-|a-b|)(a,b∈R),設(shè)函數(shù)f(x)=-x2+2x+4,g(x)=x+2(x∈R)函數(shù)F(f(x),g(x))的最大值與零點之和為( 。
A.4B.6C.$4-2\sqrt{5}$D.$2\sqrt{5}+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a∈R,“a>1”是“方程x2+2ax+y2+1=0的曲線是圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知F為拋物線C:y2=5x的焦點,點A(3,1),M是拋物線C上的動點,當(dāng)|MA|+|MF|取最小值$\frac{17}{4}$時,
點M的坐標(biāo)為($\frac{1}{5}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥-3}\\{y≤2}\\{x-y-1≤0}\end{array}\right.$,則$\frac{y-1}{x-4}$的最大值為$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x+1)=2x-1,則f(x)的解析式為( 。
A.f(x)=3-2xB.f(x)=2x-3C.f(x)=3x-2D.f(x)=3x

查看答案和解析>>

同步練習(xí)冊答案