在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足b1=a1=3,b4=a2,b13=a3
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求使
1
a1
+
1
a2
+…+
1
an
40
81
成立的最小正整數(shù)n的值.
考點(diǎn):數(shù)列的求和,等差數(shù)列與等比數(shù)列的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)條件求出公差和公比,即可求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)根據(jù)等比數(shù)列的前n項(xiàng)和的公式,解不等式
1
a1
+
1
a2
+…+
1
an
40
81
,即可求出成立的最小正整數(shù)n的值.
解答: 解:(1)設(shè)等比數(shù)列{an}的公比為q,等差數(shù)列{bn}的公差為d.
由已知得,a2=3q,a3=3q2,b4=3+3d,b13=3+12d,
所以
3q=3+3d
3q2=3+12d
,即
q=1+d
q2=1+4d
,
解得q=3或q=1(舍去),所以d=2.
所以an=3n,bn=2n+1.
(2)因?yàn)閍n=3n,所以
1
an
=
1
3n
,
所以{
1
an
}是等比數(shù)列,公比q=
1
3
,
1
a1
+
1
a2
+…+
1
an
=
1
3
(1-
1
3n
)
1-
1
3
=
1
2
(1-
1
3n
),
不等式化為
1
2
(1-
1
3n
)>
40
81
,即
1
3n
1
81
,
即3n>81,解得n>4,
所以,最小正整數(shù)n的值為5.
點(diǎn)評(píng):本題主要考查數(shù)列通項(xiàng)公式的求解,以及等比數(shù)列的求和,要求熟練掌握相應(yīng)的公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=sinπx在區(qū)間(0,+∞)內(nèi)的全部零點(diǎn)按從小到大的順序排成數(shù)列{an}.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=2nan,其中n∈N*,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
lnx+1
sinθ
(0<θ<π),且f(x)≤x對(duì)?x>0恒成立.?dāng)?shù)列{an}滿足a1=f(1),an+1=
1
2
an+
n2-2n-1
4n2(n+1)2
(n∈N*).
(1)求θ的取值集合;
(2)設(shè)bn=an-
1
2n2
,求數(shù)列{bn}的通項(xiàng)公式;
(3)數(shù)列{cn}中,c1=1,cn+1=(1+an)cn,求證:cn<e2.(e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是公比不為1的等比數(shù)列,a1=1,且a1,a3,a2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)若數(shù)列{an}的前n項(xiàng)和為Sn,試求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0≤x≤1,f(x)=x2-ax+
1
2
a(a>0)的最小值為m,試用a表示m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},a1=1,an+1=an+
1+p
1-p
an2(n∈N*,p∈R,p≠1).
(Ⅰ)求數(shù)列{an}為單調(diào)增數(shù)列的充要條件;
(Ⅱ)當(dāng)p=
1
3
時(shí),令bn=
1
1+2an
,數(shù)列{bn}的前n項(xiàng)和為Sn.求證:
1
2
-
1
5n
<Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱ABC-A1B1C1的底面ABC是等腰直角三角形,AB=AC=1,側(cè)棱AA1⊥底面ABC,且AA1=2,E是BC的中點(diǎn),F(xiàn)是A1C上的點(diǎn).
(1)求異面直線AE與A1C所成角θ的大。ńY(jié)果用反三角函數(shù)表示);
(2)若EF⊥A1C,求線段CF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將曲線方程ρ=
2
cos(θ-
π
4
)化成直角坐標(biāo)方程:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,若直線l:ρ(cosθ+sinθ)=a與曲線C:ρ=1,θ∈(0,π)有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案