1.已知數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),數(shù)列{$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$}的前n項(xiàng)和為Sn,則S1•S2•S3…S10=$\frac{1}{11}$.

分析 根據(jù)2a1+22a2+23a3+…+2nan=n,求出an=$\frac{1}{{2}^{n}}$,再利用對(duì)數(shù)的運(yùn)算性質(zhì)和裂項(xiàng)法即可得到$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,裂項(xiàng)求和得到Sn,代值計(jì)算即可.

解答 解:∵2a1+22a2+23a3+…+2nan=n,
∴2a1+22a2+23a3+…+2n-1an-1=n-1,
∴2nan=1,
∴an=$\frac{1}{{2}^{n}}$,
∴$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$=$\frac{1}{lo{g}_{2}{2}^{-n}•lo{g}_{2}{2}^{-(n+1)}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
∴S1•S2•S3…S10=$\frac{1}{2}$×$\frac{2}{3}$×$\frac{3}{4}$×…×$\frac{9}{10}$×$\frac{10}{11}$=$\frac{1}{11}$,
故答案為:$\frac{1}{11}$

點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)公式的求法和裂項(xiàng)求和,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若集合A={-2,-1,0,1,2},集合B={x|lg(x+1)>0},則A∩B等于( 。
A.{-1,0,1,2}B.{-1,-2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某市為了制定合理的節(jié)電方案,供電局對(duì)居民用電進(jìn)行了調(diào)查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[800,900]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中m的值并估計(jì)居民月均用電量的中位數(shù);
(Ⅱ)從樣本里月均用電量不低于700度的用戶中隨機(jī)抽取4戶,用X表示月均用電量不低于800度的用戶數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一個(gè)多面體的三視圖和直觀圖如圖所示,M是AB的中點(diǎn),一只蜻蜓在幾何體ADF-BCE內(nèi)自由飛翔,則它飛入幾何體F-AMCD內(nèi)的概率為( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.滿足{1,2}⊆P?{1,2,3,4}的集合P的個(gè)數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=2,∠ABC=60°,平面ACEF⊥平面ABCD,四邊形ACEF是菱形,∠CAF=60°.
(1)求證:BC⊥平面ACEF;
(2)求平面ABF與平面ADF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知Sn為數(shù)列{an}的前n項(xiàng)和,對(duì)n∈N*都有Sn=1-an,若bn=log2an,則$\frac{1}{{{b_1}{b_2}}}$+$\frac{1}{{{b_2}{b_3}}}$+…+$\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線的頂點(diǎn)是雙曲線16x2-9y2=144的中心,而焦點(diǎn)是雙曲線的右頂點(diǎn),求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖正方形的曲線C是以1為直徑的半圓,從區(qū)間[0,1]上取1600個(gè)隨機(jī)數(shù)x1,x2,…,x800,y1,y2,…,y800,已知800個(gè)點(diǎn)(x1,y1),(x2,y2),…,(x800,y800)落在陰影部分陰影部分的個(gè)數(shù)為m,則m的估計(jì)值為( 。
A.157B.314C.486D.628

查看答案和解析>>

同步練習(xí)冊(cè)答案