【題目】設a,b是兩條不同的直線,α,β是兩個不同的平面,則能得出a⊥b的是(
A.a⊥α,b∥β,α⊥β
B.a⊥α,b⊥β,α∥β
C.aα,b⊥β,α∥β
D.aα,b∥β,α⊥β

【答案】C
【解析】解:A.若α⊥β,a⊥α,aβ,bβ,b⊥α,則a∥b,故A錯;
B.若a⊥α,α∥β,則a⊥β,又b⊥β,則a∥b,故B錯;
C.若b⊥β,α∥β,則b⊥α,又aα,則a⊥b,故C正確;
D.若α⊥β,b∥β,設α∩β=c,由線面平行的性質(zhì)得,b∥c,若a∥c,則a∥b,故D錯.
故選C.
【考點精析】利用空間中直線與平面之間的位置關系對題目進行判斷即可得到答案,需要熟知直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在圓錐曲線中,我們把過焦點最短的弦稱為通徑,那么拋物線y2=2px的通徑為4,則P=( 。
A.1
B.4
C.2
D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集U={1,2,3,4,5},A={1,3,5},B={2,4,5},則(UA)∩(UB)=(
A.
B.{4}
C.{1,5}
D.{2,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面α與平面β平行的條件可以是(
A.α內(nèi)有無數(shù)條直線都與β平行
B.直線aα,直線bβ,且a∥β,b∥α
C.α內(nèi)的任何直線都與β平行
D.直線a∥α,a∥β,且直線a不在α內(nèi),也不在β內(nèi)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log2(x+1)﹣2.
(1)若f(x)>0,求x的取值范圍.
(2)若x∈(﹣1,3],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若集合A={x|x+m≥0},B={x|﹣2<x<4},全集∪=R,且(UA)∩B=,則m的取值范圍是(
A.(﹣∞,2)
B.[2,+∞)
C.(2,+∞)
D.(﹣∞,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=3|x1|+m的圖象與x軸沒有交點,則實數(shù)m的取值范圍是(
A.m≥0或m<﹣1
B.m>0或m<﹣1
C.m>1或m≤0
D.m>1或m<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由a1=1,d=3確定的等差數(shù)列{an}中,當an=298時,序號n等于(
A.99
B.100
C.96
D.101

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)的圖象與函數(shù)y=x2x≥0)的圖象關于直線y=x對稱,那么下列情形不可能出現(xiàn)的是(
A.函數(shù)y=f(x)有最小值
B.函數(shù)y=f(x)過點(4,2)
C.函數(shù)y=f(x)是偶函數(shù)
D.函數(shù)y=f(x)在其定義域上是增函數(shù)

查看答案和解析>>

同步練習冊答案