設(shè)全集I=R,T={x|x2<x},M={x|x∉T},則M等于( 。
A、{x|x≥1}
B、{x|x>1}
C、{x|-1≤x≤0}
D、{x|x≥1或x≤0}
考點:一元二次不等式的解法,補集及其運算
專題:計算題,不等式的解法及應(yīng)用
分析:通過二次不等式的求解推出集合T,然后求出M即可.
解答: 解:因為全集I=R,T={x|x2<x}={x|0<x<1},
所以M={x|x∉T}={x|x≥1或x≤0},
故選D.
點評:本題考查二次不等式的解法,集合的補集的求法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinx,1),
b
=(cosx,
1
2
),f(x)=
a
•(
a
-k
b

(1)求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)的最大值為
5-
3
2
,則函數(shù)f(x)的圖象能否由函數(shù)g(x)=2
a
b
的圖象經(jīng)過平移得到?若能,則寫出一個平移向量
m
;若不能,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
x-5
2-x
>0的解集是( 。
A、{x|x>5或 x<2}
B、{x|2<x<5}
C、{x|x>5或 x<-2}
D、{x|-2<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某影視城為提高旅游增加值,現(xiàn)需要對影視城內(nèi)景點進行改造升級.經(jīng)過市場調(diào)查,改造后旅游收入y(萬元)與投入x(萬元)之間滿足關(guān)系:y=
51
50
x
-ax2,x∈[t,+∞),其中t為大于
1
2
的常數(shù).當(dāng)x=10萬元時,y=9.2萬元,又每投入x萬元需繳納(3+ln
x
10
)萬元的增值稅(旅游增加值=旅游收入-增值稅).
(I)若旅游增加值為了f(x),求f(x)的解析式;
(Ⅱ)求旅游增加值f(x)的最大值M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin(
π
3
x+
π
6
),集合M={x||f(x)|=2,x>0},把M中的元素從小到大依次排成一列,得到數(shù)列{an}(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足:b 1=1,bn+1=bn+a2n,求{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)連續(xù)鄭2次骰子,并依次記下正面朝上的點數(shù)分別為x,y,記點P(x,y),則點P落在圓C:x2+y2=16內(nèi)部的概率是(  )
A、
1
6
B、
1
3
C、
2
9
D、
5
18
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知圓的方程是(x+4)2+(y-2)2=9,求經(jīng)過點P(-1,5)的切線方程.
(2)點P是橢圓
x2
16
+
y2
12
=1上的動點,A(1,0),求PA的最大、小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
p
=(x,m),
q
=(x+a,1)
,二次函數(shù)f(x)=
p
q
+1
,關(guān)于x的不等式f(x)>(2m-1)x+1-m2的解集為(-∞,m)∪(m+1,+∞),其中m為非零常數(shù),設(shè)g(x)=
f(x)
x-1

(Ⅰ)求a的值;
(Ⅱ)若存在一條與y軸垂直的直線和函數(shù)Γ(x)=g(x)-x+lnx的圖象相切,且切點的橫坐標x0滿足|x0-1|+x0>3,求實數(shù)m的取值范圍;
(Ⅲ)當(dāng)實數(shù)k取何值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值?并求出相應(yīng)的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)舉行了一次“環(huán)保知識競賽”,全校學(xué)生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計.請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
頻率分布表
組別 分組 頻數(shù) 頻率
第1組 [50,60) 8 0.16
第2組 [60,70) a
第3組 [70,80) 20 0.40
第4組 [80,90) 0.08
第5組 [90,100] 2 b
合計
(1)寫出a,b,x,y的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取2名同學(xué)到廣場參加環(huán)保知識的志愿宣傳活動,求所抽取的2名同學(xué)來自同一組的概率;
(3)在(2)的條件下,設(shè)ξ表示所抽取的2名同學(xué)中來自第5組的人數(shù),求ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案