設(shè)函數(shù)f(x)=x2ex-1-
1
3
x3-x2(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈(1,+∞)時(shí),用數(shù)學(xué)歸納法證明:?n∈N*,ex-1
xn
n!
(其中n!=1×2×…×n).
考點(diǎn):數(shù)學(xué)歸納法,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,關(guān)鍵點(diǎn)有二,一是求對導(dǎo)函數(shù),二是解不等式f′(x)>0,得到x的范圍,再兼顧函數(shù)的定義域,列出當(dāng)x變化時(shí),f′(x),f(x)的變化情況表,將能很輕松的解答問題;
(2)本問根據(jù)要證明的不等式:?n∈N*,ex-1
xn
n!
.構(gòu)造出函數(shù)設(shè)gn(x)=ex-1-
xn
n!
,在利用數(shù)學(xué)歸納法證明出當(dāng)n∈N*時(shí)有假設(shè)n=k時(shí)不等式成立,即gk(x)=ex-1-
xk
k!
>0,這還要借助于導(dǎo)數(shù)來解答.
解答: (1)解:f′(x)=2xex-1+x2ex-1-x2-2x=x(x+2)(ex-1-1),
令f′(x)=0,可得x1=-2,x2=0,x3=1.
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x(-∞,-2)-2(-2,0)0(0,1)1(1,+∞)
f'(x)-0+0-0+
f(x)極小值極大值極小值
所以函數(shù)y=f(x)的增區(qū)間為(-2,0)和(1,+∞),減區(qū)間為(-∞,-2)和(0,1);
(2)證明:設(shè)gn(x)=ex-1-
xn
n!
,
當(dāng)n=1時(shí),只需證明g1(x)=ex-1-x>0,當(dāng)x∈(1,+∞)時(shí),g1′(x)=ex-1-1>0,
所以g1(x)=ex-1-x在(1,+∞)上是增函數(shù),
所以g1(x)>g1(1)=e0-1=0,即ex-1>x;
當(dāng)x∈(1,+∞)時(shí),假設(shè)n=k時(shí)不等式成立,即gk(x)=ex-1-
xk
k!
>0,
當(dāng)n=k+1時(shí),
因?yàn)間′k+1(x)=ex-1-
(k+1)•xk
(k+1)!
=ex-1-
xk
k!
>0,
所以gk+1(x)在(1,+∞)上也是增函數(shù).
所以gk+1(x)>gk+1(1)=e0-
1
(k+1)!
>0,
即當(dāng)n=k+1時(shí),不等式成立.
由歸納原理,知當(dāng)x∈(1,+∞)時(shí),?n∈N*,ex-1
xn
n!
點(diǎn)評:本題是一道好題,利用導(dǎo)數(shù)研究函數(shù)的性態(tài)是高考?,重點(diǎn)考查的內(nèi)容,本題還明確要求利用數(shù)學(xué)歸納法證明不等式,與本例中具體函數(shù)的性質(zhì)結(jié)合緊密,這也是高考考題的新穎設(shè)計(jì),在解答本題時(shí)要仔細(xì)領(lǐng)會其中的深意,將對自己的解題能力水平有很大幫助和提高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的定義域是[-6,2],則函數(shù)y=f(
x
)的定義域
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,1),b=(x2,x+2),若
a
,
b
共線,則實(shí)數(shù)x的值為( 。
A、-1B、2
C、-1或2D、1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2x2-lnx在其定義域內(nèi)的一個(gè)子區(qū)間(k-1,k+1)內(nèi)不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是( 。
A、[1,3)
B、[1,
3
2
)
C、(-
1
2
3
2
)
D、[-
1
2
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
3
ax3+x2+x+1(a≠0)在區(qū)間(0,1]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A、(-∞,-3]
B、[-3,0)∪(0,+∞)
C、(-∞,-3)∪(0,+∞)
D、[-3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與拋物線y=x2+1相切,則該雙曲線的離心率等于( 。
A、
3
B、
6
C、
5
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人向同一目標(biāo)射擊,命中率分別為0.4、0.5,則恰有一人命中的概率為( 。
A、0.9B、0.2
C、0.7D、0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某果林培育基地從其培育的一批幼苗中隨機(jī)選取了100株,測量其高度(單位:厘米),并將這些數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從高度在[120,130),[130,140),[140,150]三組內(nèi)的幼苗中,用分層抽樣的方法選取30株送給友好單位,則從高度在[140,150]內(nèi)的幼苗中選取的株數(shù)應(yīng)為( 。
A、4B、5C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在兩個(gè)袋內(nèi),分別寫著裝有1,2,3,4,5,6六個(gè)數(shù)字的6張卡片,今從每個(gè)袋中各取一張卡片,則兩數(shù)之間和能被3整除的概率為( 。
A、
1
3
B、
1
4
C、
2
9
D、
1
12

查看答案和解析>>

同步練習(xí)冊答案