(文)(本小題8分)
如圖,在四棱錐中,平面,,,,
(1)求證:;
(2)求點(diǎn)到平面的距離
證明:(1)平面,

平面 (4分)
(2)設(shè)點(diǎn)到平面的距離為
,,
求得即點(diǎn)到平面的距離為              (8分)
(其它方法可參照上述評分標(biāo)準(zhǔn)給分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)
如圖,在四棱錐V-ABCD中底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD

(1)證明:AB;         
(2)求面VAD與面VDB所成的二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)
如圖,在三棱柱中,已知,側(cè)面

(1)求直線與底面ABC所成角正切值;
(2)在棱(不包含端點(diǎn)上確定一點(diǎn)的位置,使得(要求說明理由).
(3)在(2)的條件下,若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共10分)
三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是邊長為2的等邊三角形,D為AB邊中點(diǎn),且CC1=2AB.

(1)(4′)求證:平面C1CD⊥平面ABC;
(2)(6′)求三棱錐D—CBB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分別為AB、PC的中點(diǎn)。 
(1)求異面直線PA與BF所成角的正切值。
(2)求證:EF⊥平面PCD。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,SD垂直于正方形ABCD所在的平面,AB=1,

(1)求證:
(2)設(shè)棱SA的中點(diǎn)為M,求異面直線DM與SC所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四邊形ABCD為正方形,PD平面ABCD,PD=AD=2。

(1)求PC與平面PBD所成的角;
(2)在線段PB上是否存在一點(diǎn)E,使得平面ADE?并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

( (本小題滿分12分)
在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,點(diǎn)P在棱CC1上,且CC1=4CP.

(1)、求直線AP與平面BCC1B1所成的角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)、求點(diǎn)P到平面ABD1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

異面直線是指(    )
A.不相交的兩條直線B.分別位于兩個平面內(nèi)的直線
C.一個平面內(nèi)的直線和不在這個平面內(nèi)的直線D.不同在任何一個平面內(nèi)的兩條直線

查看答案和解析>>

同步練習(xí)冊答案