精英家教網(wǎng)已知A,B 分別為曲線(xiàn)C:
x2
a2
+y2=1(y≥0,a>0)與x軸的左、右兩個(gè)交點(diǎn),直線(xiàn)l過(guò)點(diǎn)B,且與x軸垂直,S為l上異于點(diǎn)B的一點(diǎn),連接AS交曲線(xiàn)C于點(diǎn)T.
(1)若曲線(xiàn)C為半圓,點(diǎn)T為圓弧
AB
的三等分點(diǎn),試求出點(diǎn)S的坐標(biāo);
(2)如圖,點(diǎn)M是以SB為直徑的圓與線(xiàn)段TB的交點(diǎn),試問(wèn):是否存在a,使得O,M,S三點(diǎn)共線(xiàn)?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.
分析:(1)先由曲線(xiàn)C為半圓時(shí)得到a=1,再由點(diǎn)T為圓弧
AB
的三等分點(diǎn)得∠BOT=60°或120°,再對(duì)每一種情況下利用解三角的方法分別求點(diǎn)S的坐標(biāo)即可;
(II)先把直線(xiàn)AS的方程與曲線(xiàn)方程聯(lián)立,求出點(diǎn)T的坐標(biāo)以及kBT,進(jìn)而求得kSM;以及直線(xiàn)SM的方程,再利用O在直線(xiàn)SM上即可求出a的值.
解答:解:(Ⅰ)當(dāng)曲線(xiàn)C為半圓時(shí),a=1,
由點(diǎn)T為圓弧
AB
的三等分點(diǎn)得∠BOT=60°或120°.┉┉(1分)
(1)當(dāng)∠BOT=60°時(shí),∠SAB=30°.
又AB=2,故在△SAE中,有SB=AB•tan30°=
2
3
3
,∴s(1,
2
3
3
);┉┉(3分)
(2)當(dāng)∠BOT=120°時(shí),同理可求得點(diǎn)S的坐標(biāo)為(1,2
3
),
綜上,s(1,
2
3
3
)或s(1,2
3
).┉┉(5分)
(Ⅱ)假設(shè)存在a,使得O,M,S三點(diǎn)共線(xiàn).
由于點(diǎn)M在以SB為直徑的圓上,故SM⊥BT.
顯然,直線(xiàn)AS的斜率k存在且K>0,可設(shè)直線(xiàn)AS的方程為y=k(x+a)
x2
a2
+y2=1
y=k(x+a)
?(1+a2k2)x2+2a3k2x+a4k2-a2=0.
設(shè)點(diǎn)T(xT,yT),則有xT• (-a)=
a4k2-a2
1+a2k2

故xT=
a-a3k2
1+a2k2
?yT=k(xT+a )=
2ak
1+a2k2
,故T(
a-a3k2
1+a2k2
,
2ak
1+a2k2

又B(a,0)∴kBT=
yT
xT-a
=-
1
a2k
,kSM=a2k.
x=a
y=k(x+a)
?S(a,2ak),所直線(xiàn)SM的方程為y-2ak=a2k(x-a)
O,S,M三點(diǎn)共線(xiàn)當(dāng)且僅當(dāng)O在直線(xiàn)SM上,即2ak=a2ka.
又a>0,k>0?a=
2
,
故存在a=
2
,使得O,M,S三點(diǎn)共線(xiàn).
點(diǎn)評(píng):本題主要考查直線(xiàn)和圓相切,直線(xiàn)的方程,三點(diǎn)共線(xiàn)和圓的幾何性質(zhì)等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線(xiàn)的性質(zhì)和數(shù)形結(jié)合的數(shù)學(xué)思想,考查解決問(wèn)題的能力和運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別為雙曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若
|PF2|2
|PF1|
的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是(  )
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年陜西省榆林市神木中學(xué)高三(上)數(shù)學(xué)寒假作業(yè)1(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年新疆烏魯木齊市高三(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年陜西省西安市西工大附中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年陜西省西安市西工大附中高考數(shù)學(xué)四模試卷(理科)(解析版) 題型:選擇題

已知F1,F(xiàn)2分別為雙曲的左、右焦點(diǎn),P為雙曲線(xiàn)左支上任一點(diǎn),若的最小值為8a,則雙曲線(xiàn)的離心率e的取值范圍是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案