【題目】在四棱錐S-ABCD中,底面ABCD為長(zhǎng)方形,底面,其中,的可能取值為:;;;

1)求直線與平面所成角的正弦值;

2)若線段CD上能找到點(diǎn)E,滿足的點(diǎn)有兩個(gè),分別記為,,求二面角的大小.

【答案】(1)(2)30°

【解析】

1)由底面ABCD,得到即為直線AS與平面ABCD所成的角,利用正弦函數(shù)可得角的正弦值;

(2)以B為坐標(biāo)原點(diǎn),以BC、BA、BS的方向分別為x軸、y軸、z軸正方向建立如圖所示的空間直角坐標(biāo)系,由題意取時(shí),是二面角的平面角,

求得即為所求答案.

1)因?yàn)?/span>底面ABCD,所以即為直線AS與平面ABCD所成的角,

中,.

2)以B為坐標(biāo)原點(diǎn),以BC、BA、BS的方向分別為x軸、y軸、z軸正方向建立如圖所示的空間直角坐標(biāo)系.則各點(diǎn)坐標(biāo)分別為:

設(shè),所以,,

.

因?yàn)?/span>,,所以在所給的數(shù)據(jù)中,可以取①②③

當(dāng),此時(shí),,即滿足條件的點(diǎn)E有兩個(gè),

根據(jù)題意得,其坐標(biāo)為,

因?yàn)?/span>平面ABCD,所以,

所以,是二面角的平面角.

由題意得二面角為銳角,

所以二面角的大小為30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的六面體中,面是邊長(zhǎng)為2的正方形,面是直角梯形,,.

(1)求證:平面

(2)若二面角為60°,求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)戶計(jì)劃種植萵筍和西紅柿,種植面積不超過(guò)畝,投入資金不超過(guò)萬(wàn)元,假設(shè)種植萵筍和西紅柿的產(chǎn)量、成本和售價(jià)如下表:

年產(chǎn)量/畝

年種植成本/畝

每噸售價(jià)

萵筍

5噸

1萬(wàn)元

0.5萬(wàn)元

西紅柿

4.5噸

0.5萬(wàn)元

0.4萬(wàn)元

那么,該農(nóng)戶一年種植總利潤(rùn)(總利潤(rùn)=總銷售收入-總種植成本)的最大值為____萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù),有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)一動(dòng)點(diǎn))到點(diǎn)的距離與點(diǎn)軸的距離的差等于1

1)求動(dòng)點(diǎn)的軌跡的方程;

2)過(guò)點(diǎn)的直線與軌跡相交于不同于坐標(biāo)原點(diǎn)的兩點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),圓的方程為.以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線及圓的極坐標(biāo)方程;

(Ⅱ)若直線與圓交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,某地認(rèn)真貫徹落實(shí)中央十九大精神和各項(xiàng)宏觀調(diào)控政策,經(jīng)濟(jì)運(yùn)行平穩(wěn)增長(zhǎng),民生保障持續(xù)加強(qiáng),惠民富民成效顯著,城鎮(zhèn)居民收入穩(wěn)步增長(zhǎng),收入結(jié)構(gòu)穩(wěn)中趨優(yōu).據(jù)當(dāng)?shù)亟y(tǒng)計(jì)局公布的數(shù)據(jù),現(xiàn)將8月份至12月份當(dāng)?shù)氐娜司率杖朐鲩L(zhǎng)率如圖(一)與人均月收入繪制成如圖(二)所示的不完整的條形統(tǒng)計(jì)圖.現(xiàn)給出如下信息:

①10月份人均月收入增長(zhǎng)率為

②11月份人均月收入約為1442元;

③12月份人均月收入有所下降;

④從上圖可知該地9月份至12月份這四個(gè)月與8月份相比人均月收入均得到提高.

其中正確的信息個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)平面向量分解定理的四個(gè)命題:

1)一個(gè)平面內(nèi)有且只有一對(duì)不平行的向量可作為表示該平面所有向量的基;

2)一個(gè)平面內(nèi)有無(wú)數(shù)多對(duì)不平行向量可作為表示該平面內(nèi)所有向量的基;

3)平面向量的基向量可能互相垂直;

4)一個(gè)平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個(gè)互不平行向量的線性組合.

其中正確命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),已知,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案