【題目】近年來,隨著一帶一路倡議的推進,中國與沿線國家旅游合作越來越密切,中國到一帶一路沿線國家的游客人也越來越多,如圖是2013-2018年中國到一帶一路沿線國家的游客人次情況,則下列說法正確的是( 。

①2013-2018年中國到一帶一路沿線國家的游客人次逐年增加

②2013-2018年這6年中,2016年中國到一帶一路沿線國家的游客人次增幅最小

③2016-2018年這3年中,中國到一帶一路沿線國家的游客人次每年的增幅基本持平

A.①③B.②③C.①②D.①②③

【答案】A

【解析】

根據(jù)圖象上的數(shù)據(jù),對三種說法逐個分析可得答案.

觀察圖像可知說法① 正確;

觀察圖像可知2014年增加45萬人,2016年增加350萬人,故說法② 不正確,排除,,;

觀察圖像可知2017年增加320萬人,2018年增加259萬人,2016-2018年這3年中,每年增加的人次相差不大,基本持平,故說法③ 正確.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如果的定義域為,對于定義域內的任意,存在實數(shù)使得成立,則稱此函數(shù)具有“性質”.給出下列命題:

①函數(shù)具有“性質”;

②若奇函數(shù)具有“性質”,且,則;

③若函數(shù)具有“性質”,圖象關于點成中心對稱,且在上單調遞減,則上單調遞減,在上單調遞增;

④若不恒為零的函數(shù)同時具有“性質”和“性質”,且函數(shù),都有 成立,則函數(shù)是周期函數(shù).

其中正確的是__________(寫出所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在幾何體中,四邊形是菱形,平面,,且.

(1)證明:平面平面;

(2)若二面角是直二面角,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代的數(shù)學名著,書中有如下間題:“今有甲、乙、丙、丁、戊五人分五餞,令上二人所得與下三人等,且五人所得錢按順序等次差,問各得幾何?”其意思為“甲、乙、丙、丁、戊五人分五錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢(錢:古代一種重量單位)?”這個問題中丙所得為( )

A. B. C. 1錢 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,,離心率,短軸長為

(1)求橢圓的標準方程;

(2)過的直線與橢圓交于不同的兩點,,則的面積是否存在最大值?若存在,求出這個最大值及直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項和為,且.

(1)求數(shù)列的通項公式;

(2)設數(shù)列的前項和為,試比較的大小,并用數(shù)學歸納法給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,

(Ⅰ)當 時, 恒成立,求的取值范圍;

(Ⅱ)當 時,研究函數(shù)的零點個數(shù);

(Ⅲ)求證: (參考數(shù)據(jù): ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知長度為的線段的兩個端點、分別在軸和軸上運動,動點滿足,設動點的軌跡為曲線.

(1)求曲線的方程;

(2)過點且斜率不為零的直線與曲線交于兩點,在軸上是否存在定點,使得直線的斜率之積為常數(shù).若存在,求出定點的坐標以及此常數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)且 )曲線的參數(shù)方程為為參數(shù),且),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為: ,曲線的極坐標方程為.

(1)求的交點到極點的距離;

(2)設交于點,交于點,當上變化時,求的最大值.

查看答案和解析>>

同步練習冊答案