若橢圓與雙曲線有相同的焦點,則的值是(  )
A.B.1或C.1或D.1
D

試題分析:根據(jù)雙曲線的方程可知且焦點在軸上,所以對于橢圓來說半焦距為,對于雙曲線來說半焦距為,依題意可得(舍去)或,故選D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的離心率為,軸被曲線截得的線段長等于的長半軸長。

(1)求,的方程;
(2)設軸的交點為M,過坐標原點O的直線相交于點A,B,直線MA,MB分別與相交與D,E.
①證明:;
②記△MAB,△MDE的面積分別是.問:是否存在直線,使得=?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩個焦點分別為,離心率.
(1)求橢圓的方程;
(2)若直線)與橢圓交于不同的兩點,且線段 
的垂直平分線過定點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知焦點在軸上的橢圓經(jīng)過點,直線
交橢圓于不同的兩點.

(1)求該橢圓的標準方程;
(2)求實數(shù)的取值范圍;
(3)是否存在實數(shù),使△是以為直角的直角三角形,若存在,求出的值,若不存,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若一個橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,則該橢圓的離心率是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

分別為橢圓:的左右頂點,為右焦點,在點處的切線,上異于的一點,直線,中點,有如下結(jié)論:①平分;②與橢圓相切;③平分;④使得的點不存在.其中正確結(jié)論的序號是_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果表示焦點在軸上的橢圓,那么實數(shù)的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓的焦點垂直于軸的弦長為,則雙曲線的離心率的值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知F是橢圓的左焦點,P是橢圓上一點,PF⊥x軸,OP∥AB(O為坐標原點),則該橢圓的離心率是(   )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案