5.過(guò)三個(gè)點(diǎn)A(1,3),B(4,2),C(1,-1)的圓交y軸于M,N兩點(diǎn),則|MN|=( 。
A.2$\sqrt{6}$B.3$\sqrt{6}$C.2D.5$\sqrt{6}$

分析 設(shè)圓的方程為x2+y2+Dx+Ey+F=0,代入點(diǎn)的坐標(biāo),求出D,E,F(xiàn),令x=0,即可得出結(jié)論.

解答 解:設(shè)圓的方程為x2+y2+Dx+Ey+F=0,則$\left\{\begin{array}{l}{1+9+D+3E+F=0}\\{16+4+4D+2E+F=0}\\{1+1+D-E+F=0}\end{array}\right.$,
∴D=-4,E=-2,F(xiàn)=0,
∴x2+y2-4x-2y=0,
令x=0,可得y2-2y=0,
∴y=0或2,
∴|MN|=2.
故選C.

點(diǎn)評(píng) 本題考查圓的方程,考查學(xué)生的計(jì)算能力,確定圓的方程是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知曲線(xiàn)C的極坐標(biāo)方程為ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,以極點(diǎn)為原點(diǎn),極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系,則曲線(xiàn)C經(jīng)過(guò)伸縮變換$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{\sqrt{3}}{3}y}\end{array}\right.$后,得到的曲線(xiàn)是(  )
A.直線(xiàn)B.橢圓C.雙曲線(xiàn)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.氣象意義上的春季進(jìn)入夏季的標(biāo)志為:“連續(xù)五天每天日平均溫度不低于22℃”,現(xiàn)在甲、乙、丙三地連續(xù)五天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù),單位℃):
甲地:五個(gè)數(shù)據(jù)的中位數(shù)是24,眾數(shù)為22;
乙地:五個(gè)數(shù)據(jù)的中位數(shù)是27,平均數(shù)為24;
丙地:五個(gè)數(shù)據(jù)中有一個(gè)數(shù)據(jù)是30,平均數(shù)是24,方差為10.
則肯定進(jìn)入夏季的地區(qū)有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.命題“對(duì)任意實(shí)數(shù)x∈[2,3],關(guān)于x的不等式x2-a≤0恒成立”為真命題的一個(gè)必要不充分條件是(  )
A.a≥9B.a≤9C.a≤8D.a≥8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{4x+3y-12≤0}\\{y-2≥0}\end{array}\right.$,則z=$\frac{3x-y+2}{x+1}$的最大值為(  )
A.$\frac{9}{5}$B.$\frac{3}{2}$C.$\frac{25}{16}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知拋物線(xiàn)${x^2}=-4\sqrt{5}y$的焦點(diǎn)與雙曲線(xiàn)$\frac{x^2}{a}+\frac{y^2}{4}=1(a∈R)$的一個(gè)焦點(diǎn)重合,則該雙曲線(xiàn)的漸近線(xiàn)方程為( 。
A.y=±2xB.y=±4xC.$y=±\frac{1}{4}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知命題p:方程$\frac{x^2}{2m}+\frac{y^2}{12-m}=1$表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線(xiàn)$\frac{y^2}{2}-\frac{x^2}{3m}=1$的離心率e∈(2,3);若p∨q為真,且p∧q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若復(fù)數(shù)z滿(mǎn)足(1+2i)z=|2+i|,則復(fù)數(shù)z的虛部為( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$iC.-$\frac{2\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知四棱錐P-ABCD的正視圖1是一個(gè)底邊長(zhǎng)為4、腰長(zhǎng)為3的等腰三角形,圖2、圖53分別是四棱錐P-ABCD的側(cè)視圖和俯視圖.
(1)求證:AD⊥PC;
(2)求四棱錐P-ABCD的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案