【題目】若存在常數(shù) k(k∈N * , k≥2)、d、t( d , t∈R),使得無窮數(shù)列 {a n }滿足a n +1,則稱數(shù)列{an }為“段差比數(shù)列”,其中常數(shù) k、d、t 分別叫做段長、段差、段比.設(shè)數(shù)列 {bn }為“段差比數(shù)列”.
(1)已知 {bn }的首項(xiàng)、段長、段差、段比分別為1、 2 、 d 、 t .若 {bn }是等比數(shù)列,求 d 、 t 的值;
(2)已知 {bn }的首項(xiàng)、段長、段差、段比分別為1、3 、3 、1,其前 3n 項(xiàng)和為 S3n .若不等式 S3n≤ λ 3n1對(duì) n ∈ N *恒成立,求實(shí)數(shù) λ 的取值范圍;
(3)是否存在首項(xiàng)為 b,段差為 d(d ≠ 0 )的“段差比數(shù)列” {bn },對(duì)任意正整數(shù) n 都有 bn+6 = bn ,若存在, 寫出所有滿足條件的 {bn }的段長 k 和段比 t 組成的有序數(shù)組 (k, t );若不存在,說明理由.
【答案】(1)或 (2) (3) ,,,
【解析】
(1)的前4項(xiàng)依次為1,,,,先求出,再代入驗(yàn)證,可得結(jié)論;
(2)由的首項(xiàng)、段長、段比、段差,
,
是等差數(shù)列,又,即可求,從而求實(shí)數(shù)的取值范圍;
(3)取2,3,4時(shí)存在,有序數(shù)組可以是,,,.
解:(1)的前4項(xiàng)依次為1,,,,
由前三項(xiàng)成等比數(shù)列得,
,,
那么第2,3,4項(xiàng)依次為,,,,.
時(shí),,,滿足題意;
時(shí),,,滿足題意;
(2)的首項(xiàng)、段長、段比、段差分別為1、3、1、3,
,
是以為首項(xiàng)、6為公差的等差數(shù)列,
又,
,
,,
設(shè),則,
又,
當(dāng)時(shí),,;當(dāng)時(shí),,,
,,
,得,.
(3)取2,3,4時(shí)存在,有序數(shù)組可以是,,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過和不超過的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將6名黨員干部分配到4個(gè)貧困村駐村扶貧,每個(gè)貧困村至少分配1名黨員干部,則不同的分配方案共有( )
A.2640種B.4800種C.1560種D.7200種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某沿海特區(qū)為了緩解建設(shè)用地不足的矛盾,決定進(jìn)行圍海造陸以增加陸地面積.如圖,兩海岸線,所成角為,現(xiàn)欲在海岸線,上分別取點(diǎn),修建海堤,以便圍成三角形陸地,已知海堤長為6千米.
(1)如何選擇,的位置,使得的面積最大;
(2)若需要進(jìn)一步擴(kuò)大圍海造陸工程,在海堤的另一側(cè)選取點(diǎn),修建海堤,圍成四邊形陸地.當(dāng)海堤與的長度之和為10千米時(shí),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 m、n 是兩條不同的直線,α、β、γ是三個(gè)不同的平面,下列命題中正確的是( )
A.若α⊥β , β⊥γ ,則α∥γ
B.若 , , m∥n ,則α∥β
C.若 m、n 是異面直線, , m∥β , , n∥α ,則α∥β
D.平面α內(nèi)有不共線的三點(diǎn)到平面 β的距離相等,則α∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),如果存在給定的實(shí)數(shù)對(duì),使得恒成立,則稱為“函數(shù)”.
(1) 判斷函數(shù)是否是“函數(shù)”;
(2) 若是一個(gè)“函數(shù)”,求出所有滿足條件的有序?qū)崝?shù)對(duì);
(3) 若定義域?yàn)?/span>R的函數(shù)是“函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對(duì)(0,1)和(1,4),當(dāng)x[0,1]時(shí),的值域?yàn)?/span>[1,2],求當(dāng)x[2016,2016]時(shí)函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】巳知函數(shù),,其中.
(1)若是函數(shù)的極值點(diǎn),求的值;
(2)若在區(qū)間上單調(diào)遞增,求的取值范圍;
(3)記,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需把y=f(x)的圖象上所有的點(diǎn)( )
A. 向右平移個(gè)單位長度 B. 向左平移個(gè)單位長度
C. 向右平移個(gè)單位長度 D. 向左平移個(gè)單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形.
若在圖④中隨機(jī)選。c(diǎn),則此點(diǎn)取自陰影部分的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com