【題目】已知 ,命題 ,命題 .
(1)若 為真命題,求實數(shù) 的取值范圍;
(2)若命題 是假命題, 命題 是真命題,求實數(shù) 的取值范圍.
【答案】
(1)解:∵ ,
∴ ,即 ,
解得 ,
即 為真命題時, 的取值范圍是[1,2]
(2)解:∵ ∴ ,
即命題 滿足 .
∵命題“ ”是假命題,命題“ ”是真命題,
∴ 、 一真一假.
當(dāng) 真 假時,則 ,即 ,
當(dāng) 假 真時, ,即 .
綜上所述, 或
【解析】(1)根據(jù)題目中所給的條件的特點,根據(jù)全稱命題的性質(zhì)結(jié)合不等式的最值問題進(jìn)行求解即可.
(2)根據(jù)復(fù)合命題真假關(guān)系進(jìn)行判斷即可.判斷復(fù)合命題的真假要根據(jù)真值表來判定,根據(jù)相應(yīng)的定義是解決本題的關(guān)鍵.
【考點精析】本題主要考查了復(fù)合命題的真假和命題的真假判斷與應(yīng)用的相關(guān)知識點,需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真;兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一學(xué)生共有500人,為了了解學(xué)生的歷史學(xué)習(xí)情況,隨機抽取了50名學(xué)生,對他們一年來4次考試的歷史平均成績進(jìn)行統(tǒng)計,得到頻率分布直方圖如圖所示,后三組頻數(shù)成等比數(shù)列.
(1)求第五、六組的頻數(shù),補全頻率分布直方圖;
(2)若每組數(shù)據(jù)用該組區(qū)間中點值(例如區(qū)間[70,80)的中點值是
75作為代表,試估計該校高一學(xué)生歷史成績的平均分;
(3)估計該校高一學(xué)生歷史成績在70~100分范圍內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當(dāng)時,的取值范圍恰為,則稱函數(shù)是上的正函數(shù),區(qū)間叫做函數(shù)的等域區(qū)間.
(1)已知是上的正函數(shù),求的等域區(qū)間;
(2)試探求是否存在,使得函數(shù)是上的正函數(shù)?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟,某單位在政府部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,新上了把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目.經(jīng)測算,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似的表示為:,且每處理一噸二氧化碳可得到能利用的化工產(chǎn)品價值為200元,若該項目不獲利,政府將補貼.
(I)當(dāng)時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損;
(II)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是數(shù)列的前n項和,,且.
(1)求數(shù)列的通項公式;
(2)對于正整數(shù),已知成等差數(shù)列,求正整數(shù)的值;
(3)設(shè)數(shù)列前n項和是,且滿足:對任意的正整數(shù)n,都有等式成立.求滿足等式的所有正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個角形海灣AOB,∠AOB=2θ(常數(shù)θ為銳角).?dāng)M用長度為l(l為常數(shù))的圍網(wǎng)圍成一個養(yǎng)殖區(qū),有以下兩種方案可供選擇:
方案一 如圖1,圍成扇形養(yǎng)殖區(qū)OPQ,其中=l;
方案二 如圖2,圍成三角形養(yǎng)殖區(qū)OCD,其中CD=l;
(1)求方案一中養(yǎng)殖區(qū)的面積S1 ;
(2)求證:方案二中養(yǎng)殖區(qū)的最大面積S2= ;
(3)為使養(yǎng)殖區(qū)的面積最大,應(yīng)選擇何種方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(0,+∞)上的函數(shù)f(x)滿足f′(x)+2f(x)= ,且f(1)= ,則不等式f(lnx)>f(3)的解集為( )
A.(﹣∞,e3)
B.(0,e3)
C.(1,e3)
D.(e3 , +∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com