在45°的二面角α-l-β中,P∈α,PQ⊥β,垂足為Q,PQ=2a,則點(diǎn)Q到平面α的距離為________.


分析:過(guò)Q作QO⊥l,交l于O,連接PO,由三垂線定理得到∠POQ=45°,PQ=2a,∠PQO=90°,OQ=2a,作QA⊥PO,交PO于A,l⊥面POQ,l⊥QA,QA⊥PO,QA⊥α,由此能求出點(diǎn)Q到平面α的距離.
解答:過(guò)Q作QO⊥l,交l于O,連接PO,
∵PQ⊥β,QO⊥l,
∴PO⊥l,
∴∠POQ=45°,
∵PQ=2a,∠PQO=90°,
∴OQ=2a,
作QA⊥PO,交PO于A,
∵l⊥面POQ,∴l(xiāng)⊥QA,
∵QA⊥PO,
∴QA⊥α,
在△QAO中,
∵∠QAO=90°,∠QOA=45°,OQ=2a,

故答案為:
點(diǎn)評(píng):本題考查空間中占、線、面的距離,綜合性強(qiáng),難度大,容易出錯(cuò).解題時(shí)要認(rèn)真審題,注意三垂線定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在45°的二面角α-l-β中,P∈α,PQ⊥β,垂足為Q,PQ=2a,則點(diǎn)Q到平面α的距離為
2
a
2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在45°的二面角α-l-β的棱上有兩點(diǎn)A、B,點(diǎn)C、D分別在α,β內(nèi),且AC⊥AB,∠ABD=45°,AC=AB=BD=1,則CD的長(zhǎng)度為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在45°的二面角α-l-β中,P∈α,PQ⊥β,垂足為Q,PQ=2a,則點(diǎn)Q到平面α的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:同步題 題型:填空題

如圖,在45°的二面角α-l-β的棱上有兩點(diǎn)A、B,點(diǎn)C、D分別在α、β內(nèi),且AC⊥AB,∠ABD=45°,AC=BD=AB=1,則CD的長(zhǎng)度為(    )。

查看答案和解析>>

同步練習(xí)冊(cè)答案