【題目】有2012位學(xué)者參加某數(shù)學(xué)會(huì)議,他們中有些人相互認(rèn)識(shí),且滿足:

(1)每個(gè)人至少認(rèn)識(shí)其中的671個(gè)人;

(2)對(duì)于其中任意兩個(gè)人,若相互不認(rèn)識(shí),則總可以通過其他人間接認(rèn)識(shí),即存在,使得認(rèn)識(shí)認(rèn)識(shí),認(rèn)識(shí);

(3)不可以將2012位學(xué)者排成一排,使得相鄰的兩個(gè)人相互認(rèn)識(shí).

證明:可以將2012位學(xué)者分成兩組,其中一組能夠排成一圈,使得相鄰的人相互認(rèn)識(shí),另一組任何兩個(gè)人不認(rèn)識(shí).

【答案】見解析

【解析】

將2012位學(xué)者看作2012個(gè)點(diǎn)相鄰當(dāng)且僅當(dāng)相互認(rèn)識(shí),這樣就得到了一個(gè)圖.

取最長(zhǎng)的一條鏈,不妨設(shè).

由條件(3)知.

設(shè)表示與相鄰的點(diǎn)的集合.則、.

,,.

由鏈的最長(zhǎng)性,知對(duì)任意的,.

下面用反證法證明:.

假設(shè).則,矛盾.

.

設(shè).則構(gòu)成一個(gè)圈.

對(duì)于余下的點(diǎn):不相連.除以外的任意兩點(diǎn)、,若相連,則一定存在一條包含了、的一條鏈,這樣就找到了比更長(zhǎng)的鏈,矛盾.故不相連.

綜上,可以將2012位學(xué)者分成兩組,其中一組能夠排成一圈,使得相鄰的人相互認(rèn)識(shí),另一組任何兩人人不認(rèn)識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的極值點(diǎn)個(gè)數(shù);

(2)若,證明 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)

為回饋顧客,某商場(chǎng)擬通過摸球兌獎(jiǎng)的方式對(duì)1000位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球,球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.

1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為50元,其余3個(gè)均為10元,求

顧客所獲的獎(jiǎng)勵(lì)額為60元的概率

顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;

2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是60000元,并規(guī)定袋中的4個(gè)球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若直線與曲線的交點(diǎn)的橫坐標(biāo)為,且,求整數(shù)所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上有奇數(shù)條線段,甲乙兩人做如下游戲:兩人輪流(甲先乙后)給任一條尚未設(shè)定方向的線段設(shè)定一個(gè)方向,直至某次(甲)設(shè)定后,所有線段各有了一個(gè)方向?yàn)橹?如果最后得到的所有向量之和的模長(zhǎng)不小于原來每條線段長(zhǎng),則甲獲勝,否則乙獲勝.問:誰(shuí)有必勝策略?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于正整數(shù),若存在1,2,…,的一個(gè)排列滿足

),則稱為“循球數(shù)”.證明:

(1)9、11都是循環(huán)數(shù);

(2)為循環(huán)數(shù)的一個(gè)必要不充分條件是為質(zhì)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)個(gè)子集滿足:(1)對(duì)任意的,恰有奇數(shù)個(gè)元素;(2)對(duì)任意的,都有.(3).試確定的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為抗擊新型冠狀病毒,普及防護(hù)知識(shí),某校開展了疫情防護(hù)網(wǎng)絡(luò)知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加該活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.

1)求的值,并估計(jì)這100名學(xué)生的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

2)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為優(yōu)秀,比賽成績(jī)低于80分為非優(yōu)秀”.請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為比賽成績(jī)是否優(yōu)秀與性別有關(guān)?

優(yōu)秀

非優(yōu)秀

合計(jì)

男生

40

女生

50

合計(jì)

100

參考公式及數(shù)據(jù):.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案