精英家教網 > 高中數學 > 題目詳情

已知實數x,y,z滿足:(x-1)2+y2+z2=1,則2x+2y+z的最大值是________.

5
分析:換元:設x-1=w,得w2+y2+z2=1,利用柯西不等式得(2w+2y+z)2≤(22+22+12)(w2+y2+z2).因此當且僅當w=y=,z=時,2w+2y+z的最大值為3,進而得到2x+2y+z的最大值為3+2=5.
解答:設x-1=w,得(x-1)2+y2+z2=w2+y2+z2=1
∴2x+2y+z=2w+2y+z+2
∵(2w+2y+z)2≤(22+22+12)(w2+y2+z2)=9
∴-3≤2w+2y+z≤3,
當且僅當,即w=y=,z=時,2w+2y+z的最大值為3
由此可得:2x+2y+z的最大值為3+2=5
故答案為:5
點評:本題給出關于x、y、z的二次等式,求2x+2y+z的最大值.著重考查了柯西不等式的應用,考查了換元的數學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知實數x,y,z滿足:(x-1)2+y2+z2=1,則2x+2y+z的最大值是
5
5

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b,c均為正數,且都不等于1,若實數x,y,z滿足ax=by=cz
1
x
+
1
y
+
1
z
=0
,則abc的值等于(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知實數x,y,z滿足:(x-1)2+y2+z2=1,則2x+2y+z的最大值是______.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年重慶市南開中學高三(上)11月月考數學試卷(理科)(解析版) 題型:填空題

已知實數x,y,z滿足:(x-1)2+y2+z2=1,則2x+2y+z的最大值是   

查看答案和解析>>

同步練習冊答案