18.已知自然數(shù)x滿足3A${\;}_{x+1}^{3}$-2A${\;}_{x+2}^{2}$=6A${\;}_{x+1}^{2}$,則x( 。
A.3B.5C.4D.6

分析 利用排列數(shù)公式構(gòu)造關(guān)于x的方程,由此能求出結(jié)果.

解答 解:∵自然數(shù)x滿足3A${\;}_{x+1}^{3}$-2A${\;}_{x+2}^{2}$=6A${\;}_{x+1}^{2}$,
∴3(x+1)x(x-1)-2(x+2)(x+1)=6(x+1)x,
整理,得:3x2-11x-4=0,
解得x=4或x=-$\frac{1}{3}$(舍).
故選:C.

點(diǎn)評 本題考查實(shí)數(shù)值的求法,二查排列數(shù)公式的應(yīng)用,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,考查創(chuàng)新意識、應(yīng)用意識,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,$\overrightarrow{BD}$=m$\overrightarrow{BC}$(0<m<1),AC=3,AD=$\sqrt{7}$,C=$\frac{π}{3}$.
(Ⅰ)求△ACD的面積;
(Ⅱ)若cosB=$\frac{\sqrt{15}}{4}$,求AB的長度以及∠BAC的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知雙曲線與$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線被圓(x-c)2+y2=4a2截得弦長為2b(雙曲線的焦距2c),則該雙曲線的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}前n項(xiàng)和${S_n}=\frac{1}{2}{n^2}+\frac{3}{2}n-4$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),短軸長2,兩焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線交橢圓C于M,N兩點(diǎn),且△F2MN的周長為8.
(1)求橢圓C的方程;
(2)直線l與橢圓C相交于A,B點(diǎn),點(diǎn)D為橢圓C上一點(diǎn),四邊形AOBD為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,若A=$\frac{π}{3}$,則$\frac{^{2}+{c}^{2}-{a}^{2}}{bc}$的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知橢圓C:$\frac{x^2}{25}+\frac{y^2}{9}$=1,F(xiàn)1,F(xiàn)2是該橢圓的左右焦點(diǎn),點(diǎn)A(4,1),P是橢圓上的一個(gè)動點(diǎn),當(dāng)△APF1的周長取最大值時(shí),△APF1的面積為$\frac{56}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知sin($\frac{π}{3}$-α)=$\frac{1}{3}$,則sin($\frac{π}{6}$-2α)=( 。
A.$-\frac{7}{9}$B.$\frac{7}{9}$C.$±\frac{7}{9}$D.$-\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\overrightarrow{a}$=(4,4),$\overrightarrow b=(3,4)$
(1)求$|{3\vec a-2\vec b}|$的值
(2)若$(k\overrightarrow a+\overrightarrow b)$與($\overrightarrow{a}$-$\overrightarrow$)垂直,求k的值.

查看答案和解析>>

同步練習(xí)冊答案