設(shè)連續(xù)擲兩次骰子得到的點(diǎn)數(shù)分別為m、n,則直線y=與圓(x-3)2+y2=1相交的概率是(    )

A.                 B.                  C.                D.

答案:C

解析:圓心(3,0)到直線mx-ny=0的距離為

,

∴當(dāng)m=1時(shí),n=3,4,5,6,

當(dāng)m=2時(shí),n=6,

滿足條件的只有5種情形.

故所求概率為P=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)連續(xù)擲兩次骰子得到的點(diǎn)數(shù)分別為m、n,則直線y=
m
n
x
與圓(x-3)2+y2=1相交的概率是( 。
A、
5
18
B、
5
9
C、
5
36
D、
5
72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)連續(xù)擲兩次骰子得到的點(diǎn)數(shù)分別為m、n,令平面向量
a
=(m,n)
,
b
=(1,-3)

(Ⅰ)求使得事件“
a
b
”發(fā)生的概率;
(Ⅱ)求使得事件“|
a
|≤|
b
|
”發(fā)生的概率;
(Ⅲ)使得事件“直線y=
m
n
x
與圓(x-3)2+y2=1相交”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)三模)設(shè)連續(xù)擲兩次骰子得到的點(diǎn)數(shù)分別為m,n(m,n=1,2,…,6),則直線y=
m
n
x
與圓(x-3)2+y2=1相交的概率是
5
36
5
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)連續(xù)擲兩次骰子得到的點(diǎn)數(shù)分別為,則直線與圓相交的概率是(    )

       A.  B.      C.            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年度新課標(biāo)高三上學(xué)期數(shù)學(xué)單元測(cè)試11-理科-計(jì)算原理、隨機(jī)變量及其分布、統(tǒng)計(jì)案例 題型:選擇題

 設(shè)連續(xù)擲兩次骰子得到的點(diǎn)數(shù)分別為、,則直線與圓相交的概率是             (    )

    A. B.       C.          D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案