精英家教網 > 高中數學 > 題目詳情
給出下列命題:
①已知函數y=2sinωx的圖象與直線y=2的某兩個交點的橫坐標為x1,x2,若|x1-x2|的最小值為π,則ω=2;
②向量
a
b
滿足|
a
b
|=|
a
|•|
b
|,則
a
b
共線;
③已知冪函數y=xm2-2m-3(m∈N)的圖象與坐標軸不相交,且關于y軸對稱,則m=1;
其中所有正確命題的序號是
分析:①依題意,可知y=2sinωx的周期T=π,從而可知ω=±2,可判斷①的正誤;
②利用向量的數量積可判斷其正誤;
③依題意,解不等式m2-2m-3<0且m2-2m-3為偶數即可判斷③的正誤.
解答:解:①依題意,可知y=2sinωx的周期T=
|ω|
=π,
∴ω=±2,故①錯誤;
②∵|
a
b
|=||
a
|•|
b
|cos<
a
,
b
>|=|
a
|•|
b
|,
∴|cos<
a
,
b
>|=1,
∴<
a
,
b
>=0或π,
a
b
共線,故②正確;
③依題意,m2-2m-3≤0且m2-2m-3為偶數,
∴-1≤m≤3且m2-2m-3為偶數,
∴m=-1或m=1或m=3,故③錯誤;
綜上所述,正確命題的序號是②.
故答案為:②.
點評:本題考查命題的真假判斷與應用,考查共線向量與平面向量數量積的運算,考查冪函數的性質與應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

8、設f(x)=x3+bx2+cx,又m是一個常數.已知當m<0或m>4時,f(x)-m=0只有一個實根;當0<m<4時,f(x)-m=0有三個相異實根,現給出下列命題:
(1)f(x)-4=0和f'(x)=0有一個相同的實根;
(2)f(x)=0和f'(x)=0有一個相同的實根;
(3)f(x)+3=0的任一實根大于f(x)-1=0的任一實根;
(4)f(x)+5=0的任一實根小于f(x)-2=0的任一實根.其中錯誤命題的個數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知三個互不重合的平面α,β,γ,且α∩β=a,α∩γ=b,β∩γ=c,給出下列命題:
①若a⊥b,a⊥c,則b⊥c;②若a∩b=P則a∩c=P;③若a⊥b,a⊥c,則α⊥γ;④若a∥b則a∥c.
其中正確命題個數為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①、已知函數y=f(x).(x∈R),則y=f(x-1)的圖象與y=f(1-x)的圖象關于直線x=1對稱;
②、設函數f(x)=cos(x+φ),則“f(x)為偶函數”的充要條件是“f'(0)=0”;
③、等比數列{an}的前n項和為Sn,則“公比q>0”是“數列{Sn}單增”的充要條件;
④、實數x,y,則“
x-y≥0
y≥0
x+y≤2
”是“|2y-x|≤2”的充分不必要條件.
其中真命題有
①②④
①②④
(寫出你認為正確的所有真命題的序號).

查看答案和解析>>

科目:高中數學 來源:2011年四川省綿陽中學高考適應性檢測數學試卷(理科)(解析版) 題型:填空題

給出下列命題:
①、已知函數y=f(x).(x∈R),則y=f(x-1)的圖象與y=f(1-x)的圖象關于直線x=1對稱;
②、設函數f(x)=cos(x+φ),則“f(x)為偶函數”的充要條件是“f'(0)=0”;
③、等比數列{an}的前n項和為Sn,則“公比q>0”是“數列{Sn}單增”的充要條件;
④、實數x,y,則“”是“|2y-x|≤2”的充分不必要條件.
其中真命題有    (寫出你認為正確的所有真命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

給出下列命題:
①、已知函數y=f(x).(x∈R),則y=f(x-1)的圖象與y=f(1-x)的圖象關于直線x=1對稱;
②、設函數f(x)=cos(x+φ),則“f(x)為偶函數”的充要條件是“f'(0)=0”;
③、等比數列{an}的前n項和為Sn,則“公比q>0”是“數列{Sn}單增”的充要條件;
④、實數x,y,則“數學公式”是“|2y-x|≤2”的充分不必要條件.
其中真命題有________(寫出你認為正確的所有真命題的序號).

查看答案和解析>>

同步練習冊答案