2.已知直線l的方程為y=$\frac{1}{2}$x+1,則l的斜率為( 。
A.$\frac{1}{2}$B.-2C.2D.-$\frac{1}{2}$

分析 利用斜截式即可得出斜率.

解答 解:直線l的方程為y=$\frac{1}{2}$x+1,則l的斜率為$\frac{1}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了直線的方程與斜率,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=$\sqrt{{x}^{2}-2}$的單調(diào)增區(qū)間是$[\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=x3-3x2-k有三個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.(-4,0)B.[-4,0)C.(-∞,-4)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一組數(shù)據(jù)按從小到大順序排列為1,2,4,x,6,9這組數(shù)據(jù)的中位數(shù)為5,那么這組數(shù)據(jù)的眾數(shù)為(  )
A.4B.5C.5.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=4x3+k•$\root{3}{x}$+1(k∈R),若f(2)=8,則f(-2)的值為( 。
A.-6B.-7C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知f(x)是定義在[-5,5]上的偶函數(shù),且f(3)>f(1),則正確的是(  )
A.f(0)<f(5)B.f(-1)<f(3)C.f(3)>f(2)D.f(2)>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.球O與銳二面角α-l-β的兩半平面相切,兩切點(diǎn)間的距離為$\sqrt{3}$,O點(diǎn)到交線l的距離為2,則球O的體積為( 。
A.$\frac{4π}{3}$B.C.12πD.$4\sqrt{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.給出一個(gè)如圖所示的程序框圖,若要使輸入的x值與輸出的y值相等,則這樣的x值得個(gè)數(shù)是1個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知sinA-sinC(cosB+$\frac{\sqrt{3}}{3}$sinB)=0.
(1)求角C的大小;    
(2)若c=2,且△ABC的面積為$\sqrt{3}$,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案