曲線與直線有兩個不同的交點,實數(shù)的范圍是()
A.(,+∞)B.(,C.(0,)D.(,
B
本試題主要是考查了直線與圓的位置關系的運用。
根據題意畫出圖形,如圖所示:

由題意可得:直線l過A(2,4),B(-2,1),,又直線圖象為以(0,1)為圓心,2為半徑的半圓,,當直線l與半圓相切,C為切點時,圓心到直線l的距離d=r,即,解得k=,
當直線l過B點時,直線l的斜率為,則直線l與半圓有兩個不同的交點時,實數(shù)k的范圍為(,,故選B.
解決該試題的關鍵是理解曲線表示的圖形,結合數(shù)形結合思想得到結論。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓和直線
(1) 求證:不論取什么值,直線和圓總相交;
(2) 求取何值時,圓被直線截得的弦最短,并求最短弦的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動點到點的距離,等于它到直線的距離.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點.設線段,的中點分別為,求證:直線恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直線,圓方程為
(1)求證:直線和圓相交
(2)當圓截直線所得弦最長時,求的值
(3)直線將圓分成兩個弓形,當弓形面積之差最大時,求直線方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線截圓得到的弦長為    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)過點Q 作圓C:的切線,切點為D,且QD=4.
(1)求的值;
(2)設P是圓C上位于第一象限內的任意一點,過點P作圓C的切線l,且l交x軸于點A,交y 軸于點B,設,求的最小值(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與圓相交于兩點(其中是實數(shù)),且是直角三角形(是坐標原點),則點與點之間距離的最大值為                                                  (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在平面直角坐標系中,直線AB交x、y軸于點,一圓心位于(0,3),半徑為3的動圓沿x軸向右滾動,動圓每6秒滾動一圈,則動圓與直線AB第一次相切時所用的時間為         秒.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設有一組圓:,下列四個命題
(1)存在一條定直線與所有的圓均相切;
(2)存在一條定直線與所有的圓均相交;
(3)存在一條定直線與所有的圓均不相交;
(4)所有的圓均不經過原點.
其中真命題的序號是___________.(寫出所有的真命題的序號)

查看答案和解析>>

同步練習冊答案