如圖,ABCD是正方形,EAB的中點(diǎn),如將DDAEDCBE分別沿DE,CE折起,使AEBE重合,A,B重合后的點(diǎn)記為P,則平面PCD與平面ECD所成的二面角的大小為(。

A.30°       B.45°       C.60°       D.90°

 

答案:A
提示:

由題意PE^平面PCD,取CD中點(diǎn)F,連結(jié)EF,PF,則ÐPFE為平面PCD與平面ECD所成的二面角的平面角,又EF=2PE,∴ ÐPFE=30°.作出m在b內(nèi)的射影c,在b內(nèi)與c垂直的直線均與m垂直.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知兩個(gè)正方行ABCD和DCEF不在同一平面內(nèi),M,N分別為AB,DF的中點(diǎn).
(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正值弦;
(2)用反證法證明:直線ME與BN是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(下列兩道題任選做一道,若兩道都做,則以第一道計(jì)分)
(1)正方體ABCD-A1B1C1D1中,M、N是棱BC、CD的中點(diǎn),則異面直線AD1與MN所成的角為
60°
60°
度;
(2)如圖是表示一個(gè)正方體表面的一種平面展開圖,圖中的四條線段AB、CD、EF和GH在原正方體中相互異面的有
3
3
對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示為某風(fēng)景區(qū)設(shè)計(jì)建造的一個(gè)休閑廣場(chǎng),廣場(chǎng)的中間造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成對(duì)稱的十字形區(qū)域,十字形區(qū)域面積為2000m2,計(jì)劃在正方方形MNPQ上建一座“觀景花壇”,造價(jià)為每平方4100元,在四個(gè)相同的矩形上(圖中陰影部分)鋪石材地坪,價(jià)格為每平方110元,再在四個(gè)空角(如△DQH等)上鋪草坪,價(jià)格為每平方80元.設(shè)AD長(zhǎng)為xm,DQ長(zhǎng)為ym.
(I)試找出x與y滿足的等量關(guān)系式;
(Ⅱ)若該廣場(chǎng)的占地面積不超過2800m2,求x的取值范圍;
(Ⅲ)求該廣場(chǎng)的總造價(jià)的最小值及此時(shí)AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泉州模擬)如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的對(duì)角線AC1上任取一點(diǎn)P,以A為球心,AP為半徑作一個(gè)球.設(shè)AP=x,記該球面與正方體表面的交線的長(zhǎng)度和為f(x),則函數(shù)f(x)的圖象最有可能的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆貴州省高二上學(xué)期期末考試數(shù)學(xué) 題型:選擇題

如圖,正方休ABCD—A1B1C1D1中,E、F為AA1、AB的中點(diǎn),則圖中與EF是異面直線的直線有(   )條

A.8           B . 9              C .10                     D .11

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案